Multispectral Semantic Segmentation for Land Cover Classification: An Overview

被引:2
|
作者
Ramos, Leo Thomas [1 ,2 ]
Sappa, Angel D. [1 ,3 ]
机构
[1] Univ Autonoma Barcelona, Comp Vis Ctr, Barcelona 08193, Spain
[2] Kauel Inc, Silicon Valley, CA 94025 USA
[3] ESPOL Polytech Univ, Guayaquil 090112, Ecuador
关键词
Computer vision (CV); deep learning (DL); image segmentation; land cover classification (LCC); multispectral imaging (MSI); semantic segmentation; remote sensing; satellite imagery; REMOTE-SENSING IMAGES; FUSION NETWORK; ANALYSIS OBIA; U-NET; RGB; CONVOLUTION; ALGORITHMS; AREAS;
D O I
10.1109/JSTARS.2024.3438620
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Land cover classification (LCC) is a process used to categorize the earth's surface into distinct land types. This classification is vital for environmental conservation, urban planning, agricultural management, and climate change research, providing essential data for sustainable decision making. The use of multispectral imaging (MSI), which captures data beyond the visible spectrum, has emerged as one of the most utilized image modalities for addressing this task. In addition, semantic segmentation techniques play a vital role in this domain, enabling the precise delineation and labeling of land cover classes within imagery. The integration of these three concepts has given rise to an intriguing and ever-evolving research field, witnessing continuous advancements aimed at enhancing multispectral semantic segmentation (MSSS) methods for LCC. Given the dynamic nature of this field, there is a need for a thorough examination of the latest trends and advancements to understand its evolving landscape. Therefore, this article presents a review of current aspects in the field of MSSS for LCC, addressing the following key points: 1) prevalent datasets and data acquisition methods; 2) preprocessing methods for managing MSI data; 3) typical metrics and evaluation criteria used for assessing performance of methods; 4) current techniques and methodologies employed; and 5) spectral bands beyond the visible spectrum commonly utilized. Through this analysis, our objective is to provide valuable insights into the current state of MSSS for LCC, contributing to the ongoing development and understanding of this dynamic field while also providing perspectives for future research directions.
引用
收藏
页码:14295 / 14336
页数:42
相关论文
共 50 条
  • [1] Evaluation of multiscale morphological segmentation of multispectral imagery for land cover classification
    Li, PJ
    Xiao, XB
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 2676 - 2679
  • [2] Multispectral Semantic Land Cover Segmentation From Aerial Imagery With Deep EncoderDecoder Network
    Liu, Chengxin
    Du, Shuaiyuan
    Lu, Hao
    Li, Dehui
    Cao, Zhiguo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [3] Land Cover Classification of PolSAR Images Using Semantic Segmentation Networks
    Turkmenli, Ilter
    Aptoula, Erchan
    Kayabol, Koray
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [4] ADU-Net: Semantic segmentation of satellite imagery for land cover classification
    Talha, Muhammad
    Bhatti, Farrukh A.
    Ghuffar, Sajid
    Zafar, Hamza
    ADVANCES IN SPACE RESEARCH, 2023, 72 (05) : 1780 - 1788
  • [5] Efficient Deep Semantic Segmentation for Land Cover Classification Using Sentinel Imagery
    Tzepkenlis, Anastasios
    Marthoglou, Konstantinos
    Grammalidis, Nikos
    REMOTE SENSING, 2023, 15 (08)
  • [6] Multispectral LiDAR Point Cloud Segmentation for Land Cover Leveraging Semantic Fusion in Deep Learning Network
    Xiao, Kai
    Qian, Jia
    Li, Teng
    Peng, Yuanxi
    REMOTE SENSING, 2023, 15 (01)
  • [7] Land Cover Classification Using CNN and Semantic Segmentation: A Case of Study in Antioquia, Colombia
    González-Vélez, Juan C.
    Martinez-Vargas, Juan D.
    Torres-Madronero, Maria C.
    Communications in Computer and Information Science, 2022, 1532 CCIS : 306 - 317
  • [8] Fusing Multispectral and LiDAR Data for CNN-Based Semantic Segmentation in Semi-Arid Mediterranean Environments: Land Cover Classification and Analysis
    Chroni, Athanasia
    Vasilakos, Christos
    Christaki, Marianna
    Soulakellis, Nikolaos
    REMOTE SENSING, 2024, 16 (15)
  • [9] Land Cover Classification Using CNN and Semantic Segmentation: A Case of Study in Antioquia, Colombia
    Gonzalez-Velez, Juan C.
    Martinez-Vargas, Juan D.
    Torres-Madronero, Maria C.
    SMART TECHNOLOGIES, SYSTEMS AND APPLICATIONS, SMARTTECH-IC 2021, 2022, 1532 : 306 - 317
  • [10] Multispectral LiDAR Data for Land Cover Classification of Urban Areas
    Morsy, Salem
    Shaker, Ahmed
    El-Rabbany, Ahmed
    SENSORS, 2017, 17 (05):