Improved estimation of global surface ocean total alkalinity fields using in-situ and satellite observations

被引:0
|
作者
Shaik, Ibrahim [1 ]
Manmode, Yash [2 ]
Krishna, Kande Vamsi [3 ]
Yadav, Sandesh [2 ]
Haritha, M. [1 ]
Mahesh, P. [1 ]
Krishna, Gowtham [4 ]
Nagamani, P. V. [1 ]
Rao, G. Srinivasa [1 ]
Begum, S. K. [5 ]
Rao, M. Srinivasa [5 ]
机构
[1] Natl Remote Sensing Ctr NRSC, Hyderabad, India
[2] GH Raisoni Inst Engn & Technol, Nagpur, India
[3] Indian Inst Technol Madras IIT M, Chennai, India
[4] JNTU Kakinada, Sch Spatial Informat Technol, Kakinada, India
[5] Andhra Univ, Dept Geophys, Visakhapatnam, India
关键词
SSS; Ni; ISLR; DATA PRODUCT; ACIDIFICATION; CARBONATE; NITROGEN; VERSION; WATER;
D O I
10.1080/2150704X.2024.2391091
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Total Alkalinity (TA) is identified as one of the Essential Climate Variable (ECV) by the Global Climate Observing System (GCOS) for climate change impact assessment studies. This also plays an important role in understanding the oceanic carbon cycle, and ocean acidification. The existing global algorithms are Sea Surface Salinity (SSS) based and inadequate for precise estimation of TA fields and their dynamics due to precluding physical and biological parameters such as Sea Surface Temperature (SST), Chlorophyll-a concentration (Chl-a) and its influencing parameters (nutrients). In the present study, a novel algorithm known as the Improved Single Linear Regression (ISLR) was devised based on SSS and Nitrate (Ni) concentration. The ISLR was formulated using simultaneous in-situ measurements of SSS and Ni acquired across the global oceans. The primary objective was to mitigate uncertainties and generate consistent TA fields for the global surface ocean. ISLR performance was assessed with independent satellite and in-situ TA observations. The validation results demonstrate the ISLR approach superior performance, characterized by significant low errors (mean relative error (MRE) = 0.04 mu mol kg(-1); mean normalized bias (MNB) = -0.0003 mu mol kg(-1); and root mean square error (RMSE) = 10.08 mu mol kg(-1)) with a high correlation coefficient (R-2 = 0.96). The ISLR derived TA fields were used to study the spatiotemporal variability and seasonal dynamics of the global oceans.
引用
收藏
页码:964 / 976
页数:13
相关论文
共 50 条
  • [1] Global surface ocean calcite saturation (Ωcal) estimation using satellite and in-situ observations
    Shaik, Ibrahim
    Nagamani, P. V.
    Yadav, Sandesh
    Manmode, Yash
    JOURNAL OF MARINE SYSTEMS, 2025, 249
  • [2] Global Surface Ocean Total Alkalinity Estimation: The Machine Learning Approach
    Shaik, Ibrahim
    Yadav, Sandesh
    Krishna, Gowtham
    Mahesh, P.
    Nagamani, P. V.
    Begum, S. K.
    Manmode, Yash
    Rao, G. Srinivasa
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [3] Global variability and changes in ocean total alkalinity from Aquarius satellite data
    Fine, Rana A.
    Willey, Debra A.
    Millero, Frank J.
    GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (01) : 261 - 267
  • [4] Robust Estimates of the Total Alkalinity From Satellite Oceanographic Data in the Global Ocean
    Krishna, Kande Vamsi
    Shanmugam, Palanisamy
    IEEE ACCESS, 2023, 11 : 42824 - 42838
  • [5] Surface soil temperature seasonal variation estimation in a forested area using combined satellite observations and in-situ measurements
    Xu, Chenyang
    Qu, John J.
    Hao, Xianjun
    Zhu, Zhiliang
    Gutenberg, Laurel
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2020, 91
  • [6] Sea Surface Temperature Estimation from Satellite Observations and In-Situ Measurements Using MultiFidelity Gaussian Process Regression
    Prempraneerach, P.
    Perdikaris, P.
    Karniadakis, G. E.
    Chryssostomidis, C.
    2017 INTERNATIONAL CONFERENCE ON DIGITAL ARTS, MEDIA AND TECHNOLOGY (ICDAMT): DIGITAL ECONOMY FOR SUSTAINABLE GROWTH, 2017, : 28 - 33
  • [7] Ocean surface wind prediction in the north Indian Ocean from in situ and satellite observations using genetic algorithm
    Basu, S
    Satheesan, K
    Sarkar, A
    Kishtawal, CM
    GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (24) : 1 - 5
  • [8] Combining In Situ and Satellite Observations to Retrieve Salinity and Density at the Ocean Surface
    Droghei, R.
    Nardelli, B. Buongiorno
    Santoleri, R.
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2016, 33 (06) : 1211 - 1223
  • [9] Satellite and In Situ Observations for Advancing Global Earth Surface Modelling: A Review
    Balsamo, Gianpaolo
    Agusti-Parareda, Anna
    Albergel, Clement
    Arduini, Gabriele
    Beljaars, Anton
    Bidlot, Jean
    Bousserez, Nicolas
    Boussetta, Souhail
    Brown, Andy
    Buizza, Roberto
    Buontempo, Carlo
    Chevallier, Frederic
    Choulga, Margarita
    Cloke, Hannah
    Cronin, Meghan F.
    Dahoui, Mohamed
    De Rosnay, Patricia
    Dirmeyer, Paul A.
    Drusch, Matthias
    Dutra, Emanuel
    Ek, Michael B.
    Gentine, Pierre
    Hewitt, Helene
    Keeley, Sarah P. E.
    Kerr, Yann
    Kumar, Sujay
    Lupu, Cristina
    Mahfouf, Jean-Francois
    McNorton, Joe
    Mecklenburg, Susanne
    Mogensen, Kristian
    Munoz-Sabater, Joaquin
    Orth, Rene
    Rabier, Florence
    Reichle, Rolf
    Ruston, Ben
    Pappenberger, Florian
    Sandu, Irina
    Seneviratne, Sonia I.
    Tietsche, Steffen
    Trigo, Isabel F.
    Uijlenhoet, Remko
    Wedi, Nils
    Woolway, R. Iestyn
    Zeng, Xubin
    REMOTE SENSING, 2018, 10 (12)
  • [10] Estimation of Spatiotemporal Variability of Global Surface Ocean DIC Fields Using Ocean Color Remote Sensing Data
    Shaik, Ibrahim
    Krishna, Kande Vamsi
    Nagamani, P. V.
    Begum, S. K.
    Shanmugam, Palanisamy
    Mathew, Reema
    Pathakoti, Mahesh
    Bothale, Rajashree V.
    Chauhan, Prakash
    Osama, Mohammed
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 14