Generation of a network slicing dataset: The foundations for AI-based B5G resource management

被引:0
|
作者
Farreras, Miquel [1 ]
Paillisse, Jordi [2 ]
Fabrega, Lluis [1 ]
Vila, Pere [1 ]
机构
[1] Univ Girona, Inst Informat & Applicat, C Univ Girona 6, Girona 17003, Spain
[2] UPC BarcelonaTech, Carrer Jordi Girona 31, Barcelona 08034, Spain
来源
DATA IN BRIEF | 2024年 / 55卷
关键词
5G; B5G; Deep Learning; Network simulation; Network slicing; Quality of service; Transport networks; KPI;
D O I
10.1016/j.dib.2024.110738
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents a comprehensive network slicing dataset designed to empower artificial intelligence (AI), and data- based performance prediction applications, in 5G and beyond (B5G) networks. The dataset, generated through a packet- level simulator, captures the complexities of network slicing considering the three main network slice types defined by 3GPP: Enhanced Mobile Broadband (eMBB), Ultra-Reliable Low Latency Communications (URLLC), and Massive Internet of Things (mIoT). It includes a wide range of network scenarios with varying topologies, slice instances, and traffic flows. The included scenarios consist of transport networks, excluding the Radio Access Network (RAN) infrastructure. Each sample consists of pairs of a network scenario and the associated performance metrics: the network configuration includes network topology, traffic characteristics, routing configurations, while the performance metrics are the delay, jitter, and loss for each flow. The dataset is generated with a custom network slicing admission control module, enabling the simulation of scenarios in multiple situations of over and underprovisioning. This network slicing dataset is a valuable asset for the research community, unlocking opportunities for innovations in 5G and B5G networks.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Overview of AI-based Algorithms for Network Slicing Resource Management in B5G and 6G
    Debbabi, Fadoua
    Jmal, Rihab
    Chaari, Lamia
    Aguiar, Rui Luis
    Gnichi, Rayen
    Taleb, Samar
    [J]. 2022 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING, IWCMC, 2022, : 330 - 335
  • [2] AI-Based Autonomic and Scalable Security Management Architecture for Secure Network Slicing in B5G
    Benzaid, Chafika
    Taleb, Tarik
    Song, JaeSeung
    [J]. IEEE NETWORK, 2022, 36 (06): : 165 - 174
  • [3] DRL-Based Dynamic Resource Configuration and Optimization for B5G Network Slicing
    Tian, Kangxu
    Wang, Yitian
    Pan, Duotao
    Yuan, Decheng
    [J]. IEEE ACCESS, 2024, 12 : 120864 - 120876
  • [4] Design of AI-based Resource Forecasting Methods for Network Slicing
    Sebastian Camargo, Juan
    Coronado, Estefania
    Gomez, Blas
    Rincon, David
    Siddiqui, Shuaib
    [J]. 2022 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING, IWCMC, 2022, : 1064 - 1069
  • [5] Dynamic-Adaptive AI Solutions for Network Slicing Management in Satellite-Integrated B5G Systems
    Lei, Lei
    Yuan, Yaxiong
    Vu, Thang X.
    Chatzinotas, Symeon
    Minardi, Mario
    Montoya, Jesus Fabian Mendoza
    [J]. IEEE NETWORK, 2021, 35 (06): : 91 - 97
  • [6] Intelligent Network Slicing for B5G and 6G: Resource Allocation, Service Provisioning, and Security
    Wang, Jiadai
    Li, Yuanhao
    Liu, Jiajia
    Kato, Nei
    [J]. IEEE WIRELESS COMMUNICATIONS, 2024, 31 (03) : 271 - 277
  • [7] Leveraging Digital Twin Approach for Network Slicing in B5G Network
    Yaqoob, Mahnoor
    Trestian, Ramona
    Nguyen, Huan X.
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS, 2023, : 242 - 247
  • [8] Game theory for B5G upper-tier resource allocation using network slicing
    Fadoua Debbabi
    Rui Luis Aguiar
    Rihab Jmal
    Lamia Chaari Fourati
    [J]. Wireless Networks, 2023, 29 : 2047 - 2059
  • [9] Game theory for B5G upper-tier resource allocation using network slicing
    Debbabi, Fadoua
    Aguiar, Rui Luis
    Jmal, Rihab
    Fourati, Lamia Chaari
    [J]. WIRELESS NETWORKS, 2023, 29 (05) : 2047 - 2059
  • [10] DeepCog: Optimizing Resource Provisioning in Network Slicing With AI-Based Capacity Forecasting
    Bega, Dario
    Gramaglia, Marco
    Fiore, Marco
    Banchs, Albert
    Costa-Perez, Xavier
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2020, 38 (02) : 361 - 376