Strategies for Compressing the Pareto Frontier: Application to Strategic Planning of Hydropower in the Amazon Basin

被引:0
|
作者
Qu, Zhongdi [1 ]
Grimson, Marc [1 ]
Mao, Yue [1 ]
Heilpern, Sebastian [2 ]
Miqueleiz, Imanol [2 ]
Pacheco, Felipe [2 ]
Flecker, Alexander [2 ]
Gomes, Carla P. [1 ]
机构
[1] Cornell Univ, Dept Comp Sci, Ithaca, NY 14853 USA
[2] Cornell Univ, Dept Ecol & Evolutionary Biol, Ithaca, NY USA
基金
美国食品与农业研究所; 美国国家科学基金会;
关键词
Multi-objective optimization; Approximation algorithms; Hierarchical clustering; ALGORITHM; OPTIMIZATION;
D O I
10.1007/978-3-031-60599-4_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The development of ethical AI decision-making systems requires considering multiple criteria, often resulting in a large spectrum of partially ordered solutions. At the core of this challenge lies the Pareto frontier, the set of all feasible solutions where no solution is dominated by another. In previous work, we developed both exact and approximate algorithms for generating the Pareto frontier for tree-structured networks. However, as the number of criteria grows, the Pareto frontier increases exponentially, posing a significant challenge for decision-makers. To address this challenge, we propose various strategies to efficiently compress the Pareto frontier, including an approximation method with optimality and polynomial runtime guarantees. We provide detailed empirical results on the strategies' effectiveness in the context of strategic planning of the hydropower expansion in the Amazon basin. Our strategies offer a more manageable approach for navigating Pareto frontiers.
引用
收藏
页码:141 / 157
页数:17
相关论文
共 4 条
  • [1] Efficiently Approximating the Pareto Frontier: Hydropower Dam Placement in the Amazon Basin
    Wu, Xiaojian
    Gomes-Selman, Jonathan
    Shi, Qinru
    Xue, Yexiang
    Garcia-Villacorta, Roosevelt
    Anderson, Elizabeth
    Sethi, Suresh
    Steinschneider, Scott
    Flecker, Alexander
    Gomes, Carla P.
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 849 - 858
  • [2] Reducing greenhouse gas emissions of Amazon hydropower with strategic dam planning
    Rafael M. Almeida
    Qinru Shi
    Jonathan M. Gomes-Selman
    Xiaojian Wu
    Yexiang Xue
    Hector Angarita
    Nathan Barros
    Bruce R. Forsberg
    Roosevelt García-Villacorta
    Stephen K. Hamilton
    John M. Melack
    Mariana Montoya
    Guillaume Perez
    Suresh A. Sethi
    Carla P. Gomes
    Alexander S. Flecker
    Nature Communications, 10
  • [3] Reducing greenhouse gas emissions of Amazon hydropower with strategic dam planning
    Almeida, Rafael M.
    Shi, Qinru
    Gomes-Selman, Jonathan M.
    Wu, Xiaojian
    Xue, Yexiang
    Angarita, Hector
    Barros, Nathan
    Forsberg, Bruce R.
    Garcia-Villacorta, Roosevelt
    Hamilton, Stephen K.
    Melack, John M.
    Montoya, Mariana
    Perez, Guillaume
    Sethi, Suresh A.
    Gomes, Carla P.
    Flecker, Alexander S.
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [4] Using Pareto filters to support risk management in optimization under uncertainty: Application to the strategic planning of chemical supply chains
    Medina-Gonzalez, Sergio
    Pozo, Carlos
    Corsano, Gabriela
    Guillen-Gosalbez, Gonzalo
    Espuna, Antonio
    COMPUTERS & CHEMICAL ENGINEERING, 2017, 98 : 236 - 255