An Invitation to Hypercomplex Phase Retrieval: Theory and applications

被引:1
|
作者
Jacome, Roman [1 ]
Mishra, Kumar Vijay [2 ]
Sadler, Brian M. [2 ]
Arguello, Henry [3 ]
机构
[1] Univ Ind Santander, Bucaramanga 680002, Colombia
[2] US DEVCOM Army Res Lab, Adelphi, MD 20783 USA
[3] Univ Ind Santander, Syst Engn Dept, Bucaramanga 680002, Santander, Colombia
关键词
Correlation; Algebra; Image processing; Signal processing algorithms; Optical imaging; Sensors; Hypercomplex; Mathematics; Multidimensional signal processing; FOURIER-TRANSFORM; SIGNAL;
D O I
10.1109/MSP.2024.3394153
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Hypercomplex signal processing (HSP) provides state-of-the-art tools to handle multidimensional signals by harnessing the intrinsic correlation of the signal dimensions through Clifford algebra. Recently, the hypercomplex representation of the phase retrieval (PR) problem, wherein a complex-valued signal is estimated through its intensity-only projections, has attracted significant interest. The hypercomplex PR (HPR) arises in many optical imaging and computational sensing applications that usually comprise quaternion- and octonion-valued signals. Analogous to the traditional PR, measurements in HPR may involve complex, hypercomplex, Fourier, and other sensing matrices. This set of problems opens opportunities for developing novel HSP tools and algorithms. This article provides a synopsis of the emerging areas and applications of HPR with a focus on optical imaging.
引用
收藏
页码:22 / 32
页数:11
相关论文
共 50 条
  • [1] Discrete Hypercomplex Function Theory and its Applications
    Kaehler, Uwe
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648
  • [2] Color Texture Retrieval Using Hypercomplex Wavelets
    Al-Qadda, Fahad S.
    Ghouti, Lahouari
    [J]. 2009 SYMPOSIUM ON BIO-INSPIRED LEARNING AND INTELLIGENT SYSTEMS FOR SECURITY (BLISS 2009), 2009, : 121 - 126
  • [3] Phase retrieval for imaging applications
    Hislop, Greg
    Hellicar, Andrew
    [J]. 2007 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, VOLS 1-12, 2007, : 566 - 569
  • [4] Applications of Φ-Operators to Hypercomplex Geometry
    Salimov, Arif
    Aslanci, Seher
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2012, 22 (01) : 185 - 201
  • [5] Theory of hypercomplex masses.
    Frobenius, G
    [J]. SITZUNGSBERICHTE DER KONIGLICH PREUSSISCHEN AKADEMIE DER WISSENSCHAFTEN, 1903, : 504 - 537
  • [6] Hypercomplex scales and depiction theory
    Noether, E
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1929, 30 : 641 - 692
  • [7] An Invitation to Theory
    梁景宏
    [J]. China Journal of Accounting Research, 2010, (Z1) : 1 - 12
  • [8] An Invitation to Theory
    Liang, Pierre Jinghong
    [J]. CHINA JOURNAL OF ACCOUNTING RESEARCH, 2010, 3 : 1 - 12
  • [9] GENERALIZED HYPERCOMPLEX FUNCTION THEORY
    GILBERT, RP
    HILE, G
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 195 (AUG) : 1 - 29
  • [10] Novel algorithms for fast hypercomplex Fourier transform and hypercomplex correlation with applications
    Jiang, Shu-Hong
    Hao, Ming-Fei
    Zhang, Jian-Qiu
    Hu, Bo
    [J]. Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2008, 36 (01): : 100 - 105