Learning from Feature and Global Topologies: Adaptive Multi-View Parallel Graph Contrastive Learning

被引:0
|
作者
Song, Yumeng [1 ]
Li, Xiaohua [1 ]
Li, Fangfang [1 ]
Yu, Ge [1 ]
机构
[1] Northeastern Univ, Sch Comp Sci & Engn, Shenyang 110819, Peoples R China
关键词
contrastive learning; parallel deep learning; graph neural network; graph representation learning; self-supervised learning; NETWORKS;
D O I
10.3390/math12142277
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
To address the limitations of existing graph contrastive learning methods, which fail to adaptively integrate feature and topological information and struggle to efficiently capture multi-hop information, we propose an adaptive multi-view parallel graph contrastive learning framework (AMPGCL). It is an unsupervised graph representation learning method designed to generate task-agnostic node embeddings. AMPGCL constructs and encodes feature and topological views to mine feature and global topological information. To encode global topological information, we introduce an H-Transformer to decouple multi-hop neighbor aggregations, capturing global topology from node subgraphs. AMPGCL learns embedding consistency among feature, topology, and original graph encodings through a multi-view contrastive loss, generating semantically rich embeddings while avoiding information redundancy. Experiments on nine real datasets demonstrate that AMPGCL consistently outperforms thirteen state-of-the-art graph representation learning models in classification accuracy, whether in homophilous or non-homophilous graphs.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Heterogeneous Graph Contrastive Multi-view Learning
    Wang, Zehong
    Li, Qi
    Yu, Donghua
    Han, Xiaolong
    Gao, Xiao-Zhi
    Shen, Shigen
    PROCEEDINGS OF THE 2023 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2023, : 136 - 144
  • [2] Contrastive Consensus Graph Learning for Multi-View Clustering
    Wang, Shiping
    Lin, Xincan
    Fang, Zihan
    Du, Shide
    Xiao, Guobao
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2022, 9 (11) : 2027 - 2030
  • [3] Contrastive Consensus Graph Learning for Multi-View Clustering
    Shiping Wang
    Xincan Lin
    Zihan Fang
    Shide Du
    Guobao Xiao
    IEEE/CAA Journal of Automatica Sinica, 2022, 9 (11) : 2027 - 2030
  • [4] Contrastive and attentive graph learning for multi-view clustering
    Wang, Ru
    Li, Lin
    Tao, Xiaohui
    Wang, Peipei
    Liu, Peiyu
    INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (04)
  • [5] Contrastive and attentive graph learning for multi-view clustering
    Wang, Ru
    Li, Lin
    Tao, Xiaohui
    Wang, Peipei
    Liu, Peiyu
    Information Processing and Management, 2022, 59 (04):
  • [6] Multi-view graph contrastive learning for social recommendation
    Rui Chen
    Jialu Chen
    Xianghua Gan
    Scientific Reports, 14 (1)
  • [7] Multi-View Contrastive Enhanced Heterogeneous Graph Structure Learning
    Bing R.
    Yuan G.
    Meng F.
    Wang S.
    Qiao S.
    Wang Z.
    Ruan Jian Xue Bao/Journal of Software, 2023, 34 (10):
  • [8] Multi-View Graph Contrastive Learning for Urban Region Representation
    Zhang, Yu
    Xu, Yonghui
    Cui, Lizhen
    Yan, Zhongmin
    Proceedings of the International Joint Conference on Neural Networks, 2023, 2023-June
  • [9] Multi-View Contrastive Learning from Demonstrations
    Correia, Andre
    Alexandre, Luis A.
    2022 SIXTH IEEE INTERNATIONAL CONFERENCE ON ROBOTIC COMPUTING, IRC, 2022, : 338 - 344
  • [10] Multi-View Graph Contrastive Learning for Urban Region Representation
    Zhang, Yu
    Xu, Yonghui
    Cui, Lizhen
    Yan, Zhongmin
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,