Multiple potential phase-separation paths in multi-principal element alloys

被引:1
|
作者
Cao, Pei-Yu [1 ]
Liu, Feng [1 ]
Yuan, Fu-Ping [1 ,2 ]
Ma, En [3 ]
Wu, Xiao-Lei [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China
[3] Xi An Jiao Tong Univ, Ctr Alloy Innovat & Design CAID, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
来源
MATERIALS TODAY NANO | 2024年 / 28卷
关键词
Multi-principal element alloy; Phase separation; Nucleation-growth; Spinodal decomposition; Short-range order; Heterogeneity; SHORT-RANGE ORDER; HIGH-ENTROPY ALLOY; STACKING-FAULT ENERGY; CRCONI; THERMODYNAMICS; DECOMPOSITION; DEFORMATION; NUCLEATION; DUCTILITY; MODELS;
D O I
10.1016/j.mtnano.2024.100511
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
It is now well established that multi-principal element alloys (MPEAs) offer ample opportunities for exploring new compositions beyond those accessed previously by conventional alloys. However, there is one more realm of possibility presented by MPEAs that has not been touch upon thus far. Here we show that, different from conventional alloys based on a single host element, a given starting MPEA solid solution on its way towards equilibrium can take a rich variety of potential decomposition pathways via multi-stage phase separation, offering a wide range of composition destinations. If/when some of them are reached, assuming kinetically allowed, the multiple phase separation reactions one after another would lead to domains that are compositionally complex and spatially localized. This hypothetical scenario is demonstrated in this paper using a model that mimics Cr-CoNi MPEA, showing a preponderance of multiplicity even when assuming only fcc-based phases can form. The complex chemical heterogeneities created as such are expected to be an additional knob to turn for tuning spatially variable composition and chemical order and therefore mechanical properties. Our results thus advocate multiple phase separation possibilities with many potential paths and terminal chemical heterogeneities as yet another important characteristic that distinguishes MPEAs from conventional alloys.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Phase Selection Rules of Multi-Principal Element Alloys
    Wang, Lin
    Ouyang, Bin
    ADVANCED MATERIALS, 2024, 36 (16)
  • [2] Machine learning for phase selection in multi-principal element alloys
    Islam, Nusrat
    Huang, Wenjiang
    Zhuang, Houlong L.
    COMPUTATIONAL MATERIALS SCIENCE, 2018, 150 : 230 - 235
  • [3] A perspective on corrosion of multi-principal element alloys
    Birbilis, N.
    Choudhary, S.
    Scully, J. R.
    Taheri, M. L.
    NPJ MATERIALS DEGRADATION, 2021, 5 (01)
  • [4] pyMPEALab Toolkit for Accelerating Phase Design in Multi-principal Element Alloys
    Upadesh Subedi
    Anil Kunwar
    Yuri Amorim Coutinho
    Khem Gyanwali
    Metals and Materials International, 2022, 28 : 269 - 281
  • [5] pyMPEALab Toolkit for Accelerating Phase Design in Multi-principal Element Alloys
    Subedi, Upadesh
    Kunwar, Anil
    Coutinho, Yuri Amorim
    Gyanwali, Khem
    METALS AND MATERIALS INTERNATIONAL, 2022, 28 (01) : 269 - 281
  • [6] Phase stability of V- based multi-principal element alloys
    Barron, Paul J.
    Carruthers, Alexander W.
    Dawson, Huw
    Rigby, Maxwell T. P.
    Haigh, Sarah
    Jones, Nick G.
    Pickering, Ed J.
    MATERIALS SCIENCE AND TECHNOLOGY, 2022, 38 (13) : 926 - 939
  • [7] A perspective on corrosion of multi-principal element alloys
    N. Birbilis
    S. Choudhary
    J. R. Scully
    M. L. Taheri
    npj Materials Degradation, 5
  • [8] Phase classification of multi-principal element alloys via interpretable machine learning
    Lee, Kyungtae
    Ayyasamy, Mukil, V
    Delsa, Paige
    Hartnett, Timothy Q.
    Balachandran, Prasanna, V
    NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
  • [9] Deep learning accelerated phase prediction of refractory multi-principal element alloys
    Shargh, Ali K.
    Stiles, Christopher D.
    El-Awady, Jaafar A.
    ACTA MATERIALIA, 2025, 283
  • [10] Phase classification of multi-principal element alloys via interpretable machine learning
    Kyungtae Lee
    Mukil V. Ayyasamy
    Paige Delsa
    Timothy Q. Hartnett
    Prasanna V. Balachandran
    npj Computational Materials, 8