Enhanced robust output tracking of nonlinear systems with dynamic event-triggering using neural network-based method

被引:1
|
作者
Chen, Zixian [1 ]
Zhang, Huiyan [2 ,3 ]
Shi, Peng [2 ,3 ,4 ]
Huang, Yu [1 ]
Assawinchaichote, Wudhichai [5 ]
机构
[1] Chongqing Technol & Business Univ, Sch Mech Engn, Chongqing 400067, Peoples R China
[2] Chongqing Technol & Business Univ, Natl Res Base Intelligent Mfg Serv, Chongqing 400067, Peoples R China
[3] Univ Adelaide, Adelaide, SA 5005, Australia
[4] Obuda Univ, Res & Innovat Ctr, H-1034 Budapest, Hungary
[5] King Mongkuts Univ Technol Thonburi, Bangkok, Thailand
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Nonlinear systems; Dynamic event-triggered scheme; Robust tracking control; Neural network controller;
D O I
10.1007/s11071-024-10125-9
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper investigates the problem of robust tracking control for a class of nonlinear systems using a novel three-layer fully connected feedforward neural network controller. The weights of the hidden and output layers of this neural network controller are obtained by solving linear matrix inequalities, while the weights of the input and hidden layers are optimized using a genetic algorithm. Notably, the fitness function for training the genetic algorithm is the square of the difference between the reference signal and the controlled system output signal within the whole period. Moreover, considering external disturbances and time delays of networks, a novel Lyapunov-Krasovskii functional is constructed to derive sufficient conditions for the asymptotic stability with an H infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty }$$\end{document} performance of the nonlinear system. Furthermore, to conserve communication resources and reduce the computational load of the neural network controller, a dynamic event-triggered scheme with a non-negative intermediate variable is implemented. Finally, the tracking effect of the nonlinear system on two types of reference signals is tested on an inverted pendulum model to illustrate and validate the effectiveness of the proposed controller.
引用
收藏
页码:547 / 566
页数:20
相关论文
共 50 条
  • [1] Design of Robust Dynamic Output Feedback Event-Triggering Controllers for Nonlinear Uncertain Systems
    Jeong, Seongcheol
    Ban, Jaepil
    Lee, Harim
    IEEE ACCESS, 2022, 10 : 82132 - 82143
  • [2] Network-based H∞ tracking control with event-triggering sampling scheme
    Hu, S.
    Zhang, Y.
    Du, Z.
    IET CONTROL THEORY AND APPLICATIONS, 2012, 6 (04): : 533 - 544
  • [3] Dynamic Neural Network-Based Output Feedback Tracking Control for Uncertain Nonlinear Systems
    Dinh, Huyen T.
    Bhasin, S.
    Kamalapurkar, R.
    Dixon, W. E.
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2017, 139 (07):
  • [4] Dynamic Event-Triggering Neural Learning Control for Partially Unknown Nonlinear Systems
    Mu, Chaoxu
    Wang, Ke
    Qiu, Tie
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (04) : 2200 - 2213
  • [5] Dynamic event-triggering adaptive dynamic programming for robust stabilization of partially unknown nonlinear systems
    Hong, Yishen
    Xue, Shan
    Liu, Derong
    Wang, Yonghua
    NEUROCOMPUTING, 2025, 628
  • [6] Robust Dynamic Output Feedback Event-Triggering Synchronization for Complex Dynamical Networks
    Jeong, Seongcheol
    Ban, Jaepil
    IEEE ACCESS, 2022, 10 : 51261 - 51271
  • [7] Dynamic neural network-based robust observers for uncertain nonlinear systems
    Dinh, H. T.
    Kamalapurkar, R.
    Bhasin, S.
    Dixon, W. E.
    NEURAL NETWORKS, 2014, 60 : 44 - 52
  • [8] Dynamic output feedback $\mathcal {L}_\infty $L∞ control for network-based switched linear systems with performance dependent event-triggering strategies
    Qi, Yiwen
    Liu, Yanhui
    Zhang, Qingxin
    IET CONTROL THEORY AND APPLICATIONS, 2019, 13 (09): : 1258 - 1270
  • [9] Adaptive Event-Triggering H∞ Load Frequency Control for Network-Based Power Systems
    Peng, Chen
    Zhang, Jin
    Yan, Huaicheng
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (02) : 1685 - 1694
  • [10] Distributed filtering of nonlinear systems with memory-based dynamic event-triggering scheme
    Zhou, Zhidong
    Qiu, Yanping
    Cheng, Jun
    Cao, Jinde
    Wang, Yunliang
    JOURNAL OF THE FRANKLIN INSTITUTE, 2025, 362 (02)