Granularity knowledge-sharing supervised contrastive learning framework for long-tailed fault diagnosis of rotating machinery

被引:2
|
作者
Chang, Shuyuan [1 ,2 ]
Wang, Liyong [1 ,2 ]
Shi, Mingkuan [3 ]
Zhang, Jinle [4 ]
Yang, Li [1 ,2 ]
机构
[1] Beijing Univ Technol, Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China
[2] Beijing Informat Sci & Technol Univ, Key Lab Modern Measurement & Control Technol, Minist Educ, Beijing 100192, Peoples R China
[3] Soochow Univ, Sch Rail Transportat, Suzhou 215131, Peoples R China
[4] China North Vehicle Res Inst, Sci & Technol Vehicle Transmiss Lab, Beijing 100072, Peoples R China
基金
中国国家自然科学基金;
关键词
Fault diagnosis; Fault judgement; Long-tailed distribution; Subclass clustering; Supervised contrast learning;
D O I
10.1016/j.knosys.2024.112354
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The long-tailed distribution of monitoring data poses challenges for deep learning-based fault diagnosis (FD). Recent efforts utilizing supervised contrastive learning (SCL) and reweighted loss have made progress, but have overlooked two key issues: 1) prevailing random undersampling introduces sample influence bias and suboptimal model learning; and 2) focusing only on improving the FD average accuracy compromises fundamental fault judgement (FJ), heightening missed-detective and false-alarm risks unsuitable for real-world deployment. To fill these research gaps, this paper proposes a granularity knowledge-sharing SCL (GKSSCL) framework for longtailed FD, encompassing GKS supervised contrasting and GKS classification stages. In the former, normal data are clustered into multiple fine-grained subclasses that are similar in size to the fault categories for balanced contrasting. Moreover, a mixed-granularity contrastive loss facilitates knowledge sharing across granularities. In the latter, FJ and FD tasks were concurrently trained through a knowledge graph-based adaptive sharing strategy. Experiments on two fault datasets showed that the GKSSCL can effectively harness all normal data, eliminate sample influence bias, and enhance FD precision without sacrificing FJ reliability.
引用
收藏
页数:14
相关论文
共 46 条
  • [1] Progressively Balanced Supervised Contrastive Representation Learning for Long-Tailed Fault Diagnosis
    Peng, Peng
    Lu, Jiaxun
    Tao, Shuting
    Ma, Ke
    Zhang, Yi
    Wang, Hongwei
    Zhang, Heming
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [2] Targeted Supervised Contrastive Learning for Long-Tailed Recognition
    Li, Tianhong
    Cao, Peng
    Yuan, Yuan
    Fan, Lijie
    Yang, Yuzhe
    Feris, Rogerio
    Indyk, Piotr
    Katabi, Dina
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 6908 - 6918
  • [3] A supervised contrastive learning method based on online complement strategy for long-tailed fine-grained fault diagnosis
    Zhao, Zhiqian
    Jiao, Yinghou
    Xu, Yeyin
    Zhao, Runchao
    ADVANCED ENGINEERING INFORMATICS, 2025, 64
  • [4] Anchored Supervised Contrastive Learning for Long-Tailed Medical Image Regression
    Li, Zhaoying
    Xing, Zhaohu
    Liu, Hongying
    Zhu, Lei
    Wan, Liang
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT XV, 2025, 15045 : 3 - 18
  • [5] Rebalanced supervised contrastive learning with prototypes for long-tailed visual recognition
    Chang, Xuhui
    Zhai, Junhai
    Qiu, Shaoxin
    Sun, Zhengrong
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2025, 252
  • [6] A lifting contrastive learning method for rotating machinery fault diagnosis
    Liu, Zhuolin
    Zhang, Yan
    Huang, Qingqing
    2023 3RD ASIA-PACIFIC CONFERENCE ON COMMUNICATIONS TECHNOLOGY AND COMPUTER SCIENCE, ACCTCS, 2023, : 547 - 551
  • [7] Deep Contrastive Transfer Learning for Rotating Machinery Fault Diagnosis
    Zhu, Peng
    Ma, Sai
    Han, Qinkai
    Chu, Fulei
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [8] Long-tailed multi-domain generalization for fault diagnosis of rotating machinery under variable operating conditions
    Jian, Chuanxia
    Mo, Guopeng
    Peng, Yonghe
    Ao, Yinhui
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2024,
  • [9] A self-supervised contrastive learning framework with the nearest neighbors matching for the fault diagnosis of marine machinery
    Wang, Ruihan
    Chen, Hui
    Guan, Cong
    OCEAN ENGINEERING, 2023, 270
  • [10] A Two-Stage Semi-Supervised Learning Framework for Fault Diagnosis of Rotating Machinery
    Nie, Xiaoyin
    Xie, Gang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70