Additive manufacturing of Inconel 718/CuCrZr multi-metallic materials fabricated by laser powder bed fusion

被引:0
|
作者
Zhang, Lizheng [1 ,2 ,3 ]
Dong, Peng [4 ]
Zeng, Yong [1 ,2 ,3 ]
Yao, Haihua [1 ,2 ,3 ]
Chen, Jimin [1 ,2 ,3 ]
机构
[1] Beijing Univ Technol, Sch Phys & Optoelect Engn, Beijing 100124, Peoples R China
[2] Beijing Engn Res Ctr 3D Printing Digital Med Hlth, Beijing 100124, Peoples R China
[3] Minist Educ, Key Lab Trans Scale Laser Mfg Technol, Beijing 100124, Peoples R China
[4] Capital Aerosp Machinery Corp, Beijing 100076, Peoples R China
关键词
Additive manufacturing; Laser powder bed fusion; Multi-metallic materials; Inconel; 718; CuCrZr; MICROSTRUCTURE;
D O I
10.1016/j.addma.2024.104377
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The multi-metal structure combines the thermal stability and high-temperature resistance of Inconel 718 (IN718) with the excellent thermal conductivity of CuCrZr, making it highly valuable for applications in aero-engines. Nevertheless, it is challenging to fabricate high-strength multi-metallic interfaces due to their large thermophysical differences. In this paper, the interface between IN718 and CuCrZr was well bonded by laser powder bed melting technology and optimizing the process parameters. The effects of process parameters on the interfacial properties of the prepared IN718/CuCrZr were analyzed. The microstructure characteristics, element distribution, microhardness, tensile properties, and thermal conductivity of IN718/CuCrZr were studied. The melting behavior, interface characteristics, and formation mechanism of multi-metallic materials were discussed. The experimental results show that the volumetric energy density range of 209.88-404.76 J/mm3 is suitable for the formation of IN718/CuCrZr. The formation of interface characteristics is mainly attributed to Marangoni convection, which promotes the mixing of Ni and Cu elements, helps form a stable transition layer at the interface, and enables a natural transition between the two metal interfaces. This indicates that there is good metallurgical bonding at the IN718/CuCrZr interface. At the same time, the equiaxed grain structure and grain refinement were observed in the transition zone, which was also reflected in the longitudinal section hardness distribution of the IN718/CuCrZr interface. The tensile test results show the transverse of IN718/CuCrZr (IN718/CuCrZr (T)) and longitudinal of IN718/CuCrZr (IN718/CuCrZr (L)) exhibit different deformation mechanisms. The fracture of IN718/CuCrZr (T) occurs in the CuCrZr region, indicating that the interface is well bonded. The tensile properties of IN718/CuCrZr (L) are higher than that of CuCrZr and lower than that of IN718, and brittle fracture occurs at the interface. The tensile properties of IN718/CuCrZr (T) are dominated by CuCrZr and IN718/CuCrZr (L) is determined by both IN718 and CuCrZr. Compared with IN718, the thermal conductivity of IN718/CuCrZr multimetallic structure is significantly improved. This will open up the possibility of multi-metallic materials additive manufacturing for the next generation of aerospace structures.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Tribocorrosion Behavior of Inconel 718 Fabricated by Laser Powder Bed Fusion-Based Additive Manufacturing
    Siddaiah, Arpith
    Kasar, Ashish
    Kumar, Pankaj
    Akram, Javed
    Misra, Manoranjan
    Menezes, Pradeep L.
    [J]. COATINGS, 2021, 11 (02) : 1 - 9
  • [2] Development of Micro Laser Powder Bed Fusion for Additive Manufacturing of Inconel 718
    Khademzadeh, Saeed
    Gennari, Claudio
    Zanovello, Andrea
    Franceschi, Mattia
    Campagnolo, Alberto
    Brunelli, Katya
    [J]. MATERIALS, 2022, 15 (15)
  • [3] Influence of burnishing process on surface integrity of inconel 718 fabricated by laser powder bed fusion additive manufacturing
    Kaya, Mert
    Yaman, Nihal
    Tascioglu, Emre
    Kaynak, Yusuf
    [J]. SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2024, 42 (02): : 335 - 343
  • [4] Machine Learning to Optimize Additive Manufacturing Parameters for Laser Powder Bed Fusion of Inconel 718
    Kappes, Branden
    Moorthy, Senthamilaruvi
    Drake, Dana
    Geerlings, Henry
    Stebner, Aaron
    [J]. PROCEEDINGS OF THE 9TH INTERNATIONAL SYMPOSIUM ON SUPERALLOY 718 & DERIVATIVES: ENERGY, AEROSPACE, AND INDUSTRIAL APPLICATIONS, 2018, : 595 - 610
  • [5] Microstructure Evolution in Inconel 718 Produced by Powder Bed Fusion Additive Manufacturing
    Schneider, Judy
    Farris, Laura
    Nolze, Gert
    Reinsch, Stefan
    Cios, Grzegorz
    Tokarski, Tomasz
    Thompson, Sean
    [J]. JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2022, 6 (01):
  • [6] REVIEW ON POWDER-BED LASER ADDITIVE MANUFACTURING OF INCONEL 718 PARTS
    Wang, Xiaoqing
    Gong, Xibing
    Chou, Kevin
    [J]. PROCEEDINGS OF THE ASME 10TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, 2015, VOL 1, 2015,
  • [7] Review on powder-bed laser additive manufacturing of Inconel 718 parts
    Wang, Xiaoqing
    Gong, Xibing
    Chou, Kevin
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2017, 231 (11) : 1890 - 1903
  • [8] Part scale estimation of residual stress development in laser powder bed fusion additive manufacturing of Inconel 718
    Promoppatum, Patcharapit
    Uthaisangsuk, Vitoon
    [J]. FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2021, 189
  • [9] Design, processing, and assessment of additive manufacturing by laser powder bed fusion: A case study on INCONEL 718 alloy
    Su, Ching-Hua
    Rodgers, Kristina
    Chen, Poshou
    Rabenberg, Ellen
    Gorti, Sridhar
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 902
  • [10] Geometric feature reproducibility for laser powder bed fusion (L-PBF) additive manufacturing with Inconel 718
    Gradl, Paul R.
    Tinker, Darren C.
    Ivester, John
    Skinner, Shawn W.
    Teasley, Thomas
    Bili, John L.
    [J]. ADDITIVE MANUFACTURING, 2021, 47