Spatiotemporal attention aided graph convolution networks for dynamic spectrum prediction

被引:0
|
作者
Li, Yue [1 ,2 ]
Shen, Bin [1 ,2 ]
Wang, Xin [1 ]
Huang, Xiaoge [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing, Peoples R China
[2] Chongqing Key Lab Mobile Commun Technol, Chongqing, Peoples R China
来源
ICT EXPRESS | 2024年 / 10卷 / 04期
关键词
Attention mechanism; Dynamic spectrum prediction; Graph convolution network;
D O I
10.1016/j.icte.2024.02.009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To solve the spectrum scarcity problem, dynamic spectrum access (DSA) technology has emerged as a promising solution. Effectively implementing DSA demands accurate and efficient spectrum prediction. However, complex spatiotemporal correlation and heterogeneity in spectrum observations usually make spectral prediction arduous and even ambiguous. In this letter, we propose a spectrum prediction method based on an attention-aided graph convolutional neural network (AttGCN) to capture features in both spatial and temporal dimensions. By leveraging the attention mechanism, the AttGCN adapts its attention weights at different time steps and spatial positions, thus enabling itself to seize changes in spatiotemporal correlations dynamically. Simulation results show that the proposed spectrum prediction method performs better than baseline algorithms in long-term forecasting tasks. (c) 2024 The Authors. Published by Elsevier B.V. on behalf of The Korean Institute of Communications and Information Sciences. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:792 / 797
页数:6
相关论文
共 50 条
  • [1] Attention-Based Spatiotemporal Graph Fusion Convolution Networks for Water Quality Prediction
    Qiao, Junfei
    Lin, Yongze
    Bi, Jing
    Yuan, Haitao
    Wang, Gongming
    Zhou, Mengchu
    [J]. IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, : 1 - 10
  • [2] Spatiotemporal Graph Attention Networks for Urban Traffic Flow Prediction
    Zhao, Yuanpeng
    Xu, Yepeng
    He, Xitao
    Zhang, Dengyin
    [J]. 2022 IEEE 33RD ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (IEEE PIMRC), 2022, : 340 - 345
  • [3] Attention-based message passing and dynamic graph convolution for spatiotemporal data imputation
    Wang, Yifan
    Bu, Fanliang
    Lv, Xiaojun
    Hou, Zhiwen
    Bu, Lingbin
    Meng, Fanxu
    Wang, Zhongqing
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01):
  • [4] Attention-based message passing and dynamic graph convolution for spatiotemporal data imputation
    Yifan Wang
    Fanliang Bu
    Xiaojun Lv
    Zhiwen Hou
    Lingbin Bu
    Fanxu Meng
    Zhongqing Wang
    [J]. Scientific Reports, 13 (1)
  • [5] EvoSTGAT: Evolving spatiotemporal graph attention networks for pedestrian trajectory prediction
    Tang, Haowen
    Wei, Ping
    Li, Jiapeng
    Zheng, Nanning
    [J]. NEUROCOMPUTING, 2022, 491 : 333 - 342
  • [6] Spatiotemporal adaptive attention graph convolution network for city-level air quality prediction
    Hexiang Liu
    Qilong Han
    Hui Sun
    Jingyu Sheng
    Ziyu Yang
    [J]. Scientific Reports, 13
  • [7] Traffic Flow Prediction Based on Multi-Spatiotemporal Attention Gated Graph Convolution Network
    Ge, Yun
    Zhai, Jian F.
    Su, Pei C.
    [J]. Journal of Advanced Transportation, 2022, 2022
  • [8] Spatiotemporal adaptive attention graph convolution network for city-level air quality prediction
    Liu, Hexiang
    Han, Qilong
    Sun, Hui
    Sheng, Jingyu
    Yang, Ziyu
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [9] Spatiotemporal Attention-Based Graph Convolution Network for Segment-Level Traffic Prediction
    Li, Duo
    Lasenby, Joan
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (07) : 8337 - 8345
  • [10] Traffic Flow Prediction Based on Multi-Spatiotemporal Attention Gated Graph Convolution Network
    Ge, Yun
    Zhai, Jian F.
    Su, Pei C.
    [J]. JOURNAL OF ADVANCED TRANSPORTATION, 2022, 2022