First operation and validation of simulations for the divertor cryo-vacuum pump in Wendelstein 7-X

被引:0
|
作者
Haak, V. [1 ]
Dhard, C. P. [1 ]
Boeyaert, D. [2 ]
Braeuer, T. [1 ]
Bykov, V. [1 ]
Day, C. [3 ]
Degenkolbe, S. [1 ]
Ehrke, G. [1 ]
Igitkhanov, J. [3 ]
Khokhlov, M. [1 ]
Kremeyer, T. [1 ]
Nagel, M. [1 ]
Naujoks, D. [1 ]
Pietsch, M. [1 ]
Pilopp, D. [1 ]
Schlisio, G. [1 ]
Strobel, H. [3 ]
Tantos, C. [3 ]
Varoutis, S. [3 ]
Viebke, H. [1 ]
Volzke, O. [1 ]
机构
[1] Max Planck Inst Plasma Phys, D-17491 Greifswald, Germany
[2] Univ Wisconsin Madison, Madison, WI USA
[3] Karlsruhe Inst Technol, D-76344 Eggenstein Leopoldshafen, Germany
关键词
Cryo-vacuum pumping; Particle exhaust; Divertor neutral gas pressure; Stellarator Wendelstein 7-X; DESIGN;
D O I
10.1016/j.fusengdes.2024.114671
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Ten cryo-vacuum pumps (CVPs) were installed in the subdivertor region of each island divertor in the stellarator Wendelstein 7-X (W7-X) and operated for the first time during the recently completed plasma campaign OP2.1. A pumping speed of 70 +/- 1 m(3)/s was measured during dedicated tests with known hydrogen gas injection. Based on a conductance model, the estimated pumping speed ranges from 86-93 m(3)/s for different sticking coefficients between 0.6 and 0.8. After completion of the initial tests the CVPs were operated successfully throughout the campaign, with regeneration performed once a week. Neutral gas pressures in the subdivertor in the range of 10(-4) mbar are well within the molecular flow regime and limit the particle exhaust capabilities of the CVPs. Simulations of the neutral gas pressure in the three-dimensional complex geometry of the subdivertor were performed using the DIVGAS code based on the direct simulation Monte Carlo method and a model implemented in the steady-state thermal package in ANSYS, which are in agreement with the measured values during plasma operation.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Physics Programme for Initial Operation of Wendelstein 7-X
    Bosch, H. -S.
    Dinklage, A.
    Klinger, T.
    Wolf, R.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2010, 50 (08) : 687 - 694
  • [42] Managing leading edges during assembly of the Wendelstein 7-X divertor
    Endler, M.
    Fellinger, J.
    Hoelbe, H.
    Pedersen, T. Sunn
    Bozhenkov, S.
    Geiger, J.
    Grahl, M.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2019, 61 (02)
  • [43] Detecting divertor damage during steady state operation of Wendelstein 7-X from thermographic measurements
    Rodatos, A.
    Greuner, H.
    Jakubowski, M. W.
    Boscary, J.
    Wurden, G. A.
    Pedersen, T. S.
    Koenig, R.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (02):
  • [44] Manufacturing, installation, commissioning and operation of endoscopes for monitoring water-cooled divertor in Wendelstein 7-X
    Fellinger, Joris
    Schuelke, Mathias
    Krause, Marco
    Gao, Yu
    FUSION ENGINEERING AND DESIGN, 2024, 203
  • [45] Wall conditioning at the Wendelstein 7-X stellarator operating with a graphite divertor
    Goriaev, A.
    Wauters, T.
    Brakel, R.
    Brezinsek, S.
    Dinklage, A.
    Fellinger, J.
    Grote, H.
    Moseev, D.
    Sereda, S.
    Volzke, O.
    PHYSICA SCRIPTA, 2020, T171 (01)
  • [46] Experimental confirmation of efficient island divertor operation and successful neoclassical transport optimization in Wendelstein 7-X
    Pedersen, Thomas Sunn
    Abramovic, I
    Agostinetti, P.
    Torres, M. Agredano
    Aekaeslompolo, S.
    Belloso, J. Alcuson
    Aleynikov, P.
    Aleynikova, K.
    Alhashimi, M.
    Ali, A.
    Allen, N.
    Alonso, A.
    Anda, G.
    Andreeva, T.
    Angioni, C.
    Arkhipov, A.
    Arnold, A.
    Asad, W.
    Ascasibar, E.
    Aumeunier, M-H
    Avramidis, K.
    Aymerich, E.
    Baek, S-G
    Baehner, J.
    Baillod, A.
    Balden, M.
    Baldzuhn, J.
    Ballinger, S.
    Banduch, M.
    Bannmann, S.
    Navarro, A. Banon
    Barbui, T.
    Beidler, C.
    Belafdil, C.
    Bencze, A.
    Benndorf, A.
    Beurskens, M.
    Biedermann, C.
    Biletskyi, O.
    Blackwell, B.
    Blatzheim, M.
    Bluhm, T.
    Boeckenhoff, D.
    Bongiovi, G.
    Borchardt, M.
    Borodin, D.
    Boscary, J.
    Bosch, H.
    Bosmann, T.
    Boeswirth, B.
    NUCLEAR FUSION, 2022, 62 (04)
  • [47] Statistical analysis of plasma filaments in the island divertor of Wendelstein 7-X
    Csillag, B.
    Zoletnik, S.
    Killer, C.
    Vecsei, M.
    Anda, G.
    Dunai, D.
    Hegedus, S.
    Refy, D.
    Nagy, D.
    Otte, M.
    NUCLEAR FUSION, 2024, 64 (01)
  • [48] Large wetted areas of divertor power loads at Wendelstein 7-X
    Niemann, H.
    Drewelow, P.
    Jakubowski, M. W.
    Sitjes, Puig A.
    Cannas, B.
    Gao, Y.
    Pisano, F.
    Koenig, R.
    Burhenn, R.
    Hacker, P.
    Reimold, F.
    Zhang, D.
    Brunner, K. J.
    Knauer, J.
    Sunn Pedersen, T.
    NUCLEAR FUSION, 2020, 60 (08)
  • [49] Performance and properties of the first plasmas of Wendelstein 7-X
    Klinger, T.
    Alonso, A.
    Bozhenkov, S.
    Burhenn, R.
    Dinklage, A.
    Fuchert, G.
    Geiger, J.
    Grulke, O.
    Langenberg, A.
    Hirsch, M.
    Kocsis, G.
    Knauer, J.
    Kraemer-Flecken, A.
    Laqua, H.
    Lazerson, S.
    Landreman, M.
    Maassberg, H.
    Marsen, S.
    Otte, M.
    Pablant, N.
    Pasch, E.
    Rahbarnia, K.
    Stange, T.
    Szepesi, T.
    Thomsen, H.
    Traverso, P.
    Velasco, J. L.
    Wauters, T.
    Weir, G.
    Windisch, T.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (01)
  • [50] Vacuum leak search on the Wendelstein 7-X cryostat vessel
    Baldzuhn, J.
    Reimer, H.
    Biedermann, C.
    Grote, H.
    Hathiramani, D.
    Kornejew, P.
    Rademann, D.
    Volzke, O.
    VACUUM, 2015, 115 : 89 - 100