Bounds on multiplicities of symmetric pairs of finite groups

被引:0
|
作者
Aizenbud, Avraham [1 ]
Avni, Nir [2 ]
机构
[1] Weizmann Inst Sci, Fac Math & Comp Sci, Rehovot, Israel
[2] Northwestern Univ, Evanston, IL USA
关键词
20C15; 20G25; 43A85; GELFAND PAIRS; UNIQUENESS; DISTRIBUTIONS; SUBGROUPS; THEOREMS; SPACES; ANALOG;
D O I
10.1017/fms.2024.58
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let $\Gamma $ be a finite group, let $\theta $ be an involution of $\Gamma $ and let $\rho $ be an irreducible complex representation of $\Gamma $ . We bound ${\operatorname {dim}} \rho <^>{\Gamma <^>{\theta }}$ in terms of the smallest dimension of a faithful $\mathbb {F}_p$ -representation of $\Gamma /\operatorname {\mathrm {Rad}}_p(\Gamma )$ , where p is any odd prime and $\operatorname {\mathrm {Rad}}_p(\Gamma )$ is the maximal normal p-subgroup of $\Gamma $ .This implies, in particular, that if $\mathbf {G}$ is a group scheme over $\mathbb {Z}$ and $\theta $ is an involution of $\mathbf {G}$ , then the multiplicity of any irreducible representation in $C<^>\infty \left( \mathbf {G}(\mathbb {Z}_p)/ \mathbf {G} <^>{\theta }(\mathbb {Z}_p) \right)$ is bounded, uniformly in p.
引用
收藏
页数:38
相关论文
共 50 条