Replicability and generalizability in population psychiatric neuroimaging
被引:1
|
作者:
Marek, Scott
论文数: 0引用数: 0
h-index: 0
机构:
Washington Univ St Louis, Sch Med, Mallinckrodt Inst Radiol, St Louis, MO 63110 USA
Washington Univ St Louis, Sch Med, Dept Psychiat, St Louis 63110, MO USA
Washington Univ St Louis, Neuroimaging Labs Res Ctr, Sch Med, St Louis, MO 63130 USA
Washington Univ St Louis, Inst Hlth, Sch Med, St Louis, MO 63110 USAWashington Univ St Louis, Sch Med, Mallinckrodt Inst Radiol, St Louis, MO 63110 USA
Marek, Scott
[1
,2
,3
,4
]
Laumann, Timothy O.
论文数: 0引用数: 0
h-index: 0
机构:
Washington Univ St Louis, Sch Med, Dept Psychiat, St Louis 63110, MO USA
Washington Univ St Louis, Neuroimaging Labs Res Ctr, Sch Med, St Louis, MO 63130 USAWashington Univ St Louis, Sch Med, Mallinckrodt Inst Radiol, St Louis, MO 63110 USA
Laumann, Timothy O.
[2
,3
]
机构:
[1] Washington Univ St Louis, Sch Med, Mallinckrodt Inst Radiol, St Louis, MO 63110 USA
[2] Washington Univ St Louis, Sch Med, Dept Psychiat, St Louis 63110, MO USA
[3] Washington Univ St Louis, Neuroimaging Labs Res Ctr, Sch Med, St Louis, MO 63130 USA
[4] Washington Univ St Louis, Inst Hlth, Sch Med, St Louis, MO 63110 USA
Studies linking mental health with brain function in cross-sectional population-based association studies have historically relied on small, underpowered samples. Given the small effect sizes typical of such brain-wide associations, studies require samples into the thousands to achieve the statistical power necessary for replicability. Here, we detail how small sample sizes have hampered replicability and provide sample size targets given established association strength benchmarks. Critically, while replicability will improve with larger samples, it is not guaranteed that observed effects will meaningfully apply to target populations of interest (i.e., be generalizable). We discuss important considerations related to generalizability in psychiatric neuroimaging and provide an example of generalizability failure due to "shortcut learning" in brain-based predictions of mental health phenotypes. Shortcut learning is a phenomenon whereby machine learning models learn an association between the brain and an unmeasured construct (the shortcut), rather than the intended target of mental health. Given the complex nature of brain-behavior interactions, the future of epidemiological approaches to brain-based studies of mental health will require large, diverse samples with comprehensive assessment.
机构:
Univ Illinois, Dept Psychol, Chicago, IL 60680 USA
Northwestern Univ, Dept Psychiat & Behav Sci, North Lake Shore Dr, Evanston, IL 60208 USAUniv Illinois, Dept Psychol, Chicago, IL 60680 USA
Funkhouser, Carter J.
Correa, Kelly A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Psychol, Chicago, IL 60680 USA
Northwestern Univ, Dept Psychiat & Behav Sci, North Lake Shore Dr, Evanston, IL 60208 USAUniv Illinois, Dept Psychol, Chicago, IL 60680 USA
Correa, Kelly A.
Gorka, Stephanie M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Psychiat, Chicago, IL 60680 USAUniv Illinois, Dept Psychol, Chicago, IL 60680 USA
Gorka, Stephanie M.
Nelson, Brady D.
论文数: 0引用数: 0
h-index: 0
机构:
SUNY Stony Brook, Dept Psychol, Stony Brook, NY 11794 USAUniv Illinois, Dept Psychol, Chicago, IL 60680 USA
Nelson, Brady D.
Phan, K. Luan
论文数: 0引用数: 0
h-index: 0
机构:
Ohio State Univ, Dept Psychiat & Behav Hlth, Columbus, OH 43210 USAUniv Illinois, Dept Psychol, Chicago, IL 60680 USA
Phan, K. Luan
Shankman, Stewart A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Psychol, Chicago, IL 60680 USA
Northwestern Univ, Dept Psychiat & Behav Sci, North Lake Shore Dr, Evanston, IL 60208 USA
Univ Illinois, Dept Psychiat, Chicago, IL 60680 USAUniv Illinois, Dept Psychol, Chicago, IL 60680 USA