A Game-Theoretic Framework for Generic Second-Order Traffic Flow Models Using Mean Field Games and Adversarial Inverse Reinforcement Learning
被引:1
|
作者:
Mo, Zhaobin
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Civil Engn & Engn Mech, New York, NY 10027 USAColumbia Univ, Dept Civil Engn & Engn Mech, New York, NY 10027 USA
Mo, Zhaobin
[1
]
Chen, Xu
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Civil Engn & Engn Mech, New York, NY 10027 USAColumbia Univ, Dept Civil Engn & Engn Mech, New York, NY 10027 USA
Chen, Xu
[1
]
Di, Xuan
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Civil Engn & Engn Mech, New York, NY 10027 USA
Columbia Univ, Data Sci Inst, New York, NY 10027 USAColumbia Univ, Dept Civil Engn & Engn Mech, New York, NY 10027 USA
Di, Xuan
[1
,2
]
Iacomini, Elisa
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ferrara, Math & Comp Sci Dept, I-44121 Ferrara, ItalyColumbia Univ, Dept Civil Engn & Engn Mech, New York, NY 10027 USA
Iacomini, Elisa
[3
]
Segala, Chiara
论文数: 0引用数: 0
h-index: 0
机构:
Rhein Westfal TH Aachen, Inst Geometrie & Prakt Math, D-52062 Aachen, GermanyColumbia Univ, Dept Civil Engn & Engn Mech, New York, NY 10027 USA
Segala, Chiara
[4
]
Herty, Michael
论文数: 0引用数: 0
h-index: 0
机构:
Rhein Westfal TH Aachen, Inst Geometrie & Prakt Math, D-52062 Aachen, GermanyColumbia Univ, Dept Civil Engn & Engn Mech, New York, NY 10027 USA
Herty, Michael
[4
]
Lauriere, Mathieu
论文数: 0引用数: 0
h-index: 0
机构:
New York Univ, Inst Math Sci, Shanghai 200122, Peoples R ChinaColumbia Univ, Dept Civil Engn & Engn Mech, New York, NY 10027 USA
Lauriere, Mathieu
[5
]
机构:
[1] Columbia Univ, Dept Civil Engn & Engn Mech, New York, NY 10027 USA
[2] Columbia Univ, Data Sci Inst, New York, NY 10027 USA
mean field game (MFG);
generic second order traffic flow model;
adversarial inverse reinforcement learning (AIRL);
VARIATIONAL FORMULATION;
STATE ESTIMATION;
WAVES;
D O I:
10.1287/trsc.2024.0532
中图分类号:
C93 [管理学];
O22 [运筹学];
学科分类号:
070105 ;
12 ;
1201 ;
1202 ;
120202 ;
摘要:
A traffic system can be interpreted as a multiagent system, wherein vehicles choose the most efficient driving approaches guided by interconnected goals or strategies. This paper aims to develop a family of mean field games (MFG) for generic second-order traffic flow models (GSOM), in which cars control individual velocity to optimize their objective functions. GSOMs do not generally assume that cars optimize self-interested objectives, so such a game-theoretic reinterpretation offers insights into the agents' underlying behaviors. In general, an MFG allows one to model individuals on a microscopic level as rational utility-optimizing agents while translating rich microscopic behaviors to macroscopic models. Building on the MFG framework, we devise a new class of secondorder traffic flow MFGs (i.e., GSOM-MFG), which control cars' acceleration to ensure smooth velocity change. A fixed-point algorithm with fictitious play technique is developed to solve GSOM-MFG numerically. In numerical examples, different traffic patterns are presented under different cost functions. For real-world validation, we further use an inverse reinforcement learning approach (IRL) to uncover the underlying cost function on the next-generation simulation (NGSIM) data set. We formulate the problem of inferring cost functions as a min-max game and use an apprenticeship learning algorithm to solve for cost function coefficients. The results show that our proposed GSOM-MFG is a generic framework that can accommodate various cost functions. The Aw Rascle and Zhang (ARZ) and Light-Whitham-Richards (LWR) fundamental diagrams in traffic flow models belong to our GSOM-MFG when costs are specified.
机构:
Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USAColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
Huang, Kuang
Di, Xuan
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Civil Engn & Engn Mech, New York, NY 10027 USA
Columbia Univ, Data Sci Inst, New York, NY 10027 USAColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
Di, Xuan
Du, Qiang
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
Columbia Univ, Data Sci Inst, New York, NY 10027 USAColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
Du, Qiang
Chen, Xi
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Comp Sci, New York, NY 10027 USAColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA