共 19 条
- [1] Uninformed Students: Student-Teacher Anomaly Detection with Discriminative Latent Embeddings [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 4182 - 4191
- [2] MVTec AD - A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 9584 - 9592
- [3] A Hybrid Autoencoder and Density Estimation Model for Anomaly Detection [J]. PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XIV, 2016, 9921 : 717 - 726
- [4] Cohen N, 2021, Arxiv, DOI [arXiv:2005.02357, DOI 10.48550/ARXIV.2005.02357]
- [5] Defard Thomas, 2021, Pattern Recognition. ICPR International Workshops and Challenges. Proceedings. Lecture Notes in Computer Science (LNCS 12664), P475, DOI 10.1007/978-3-030-68799-1_35
- [6] Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 1705 - 1714
- [7] CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows [J]. 2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 1819 - 1828
- [8] Divide-and-Assemble: Learning Block-wise Memory for Unsupervised Anomaly Detection [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8771 - 8780
- [10] Kingma D.P., 2014, arXiv, DOI [DOI 10.48550/ARXIV.1412.6980, 10.48550/arXiv.1412.6980]