Multidimensional multiplexing holography based on optical orbital angular momentum lattice multiplexing

被引:4
|
作者
Xia, Tian [1 ]
Xie, Zhenwei [1 ]
Yuan, Xiaocong [1 ,2 ]
机构
[1] Shenzhen Univ, Inst Microscale Optoelect, Nanophoton Res Ctr, State Key Lab Radio Frequency Heterogeneous Integr, Shenzhen, Peoples R China
[2] Zhejiang Lab, Res Inst Intelligent Sensing, Res Ctr Humanoid Sensing, Hangzhou, Peoples R China
来源
ADVANCED PHOTONICS NEXUS | 2024年 / 3卷 / 01期
基金
中国国家自然科学基金;
关键词
orbital angular momentum lattice multiplexed holography; vortex lattice beam; information encryption;
D O I
10.1117/1.APN.3.1.016005
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The use of orbital angular momentum (OAM) as an independent dimension for information encryption has garnered considerable attention. However, the multiplexing capacity of OAM is limited, and there is a need for additional dimensions to enhance storage capabilities. We propose and implement orbital angular momentum lattice (OAML) multiplexed holography. The vortex lattice (VL) beam comprises three adjustable parameters: the rotation angle of the VL, the angle between the wave normal and the z axis, which determines the VL's dimensions, and the topological charge. Both the rotation angle and the VL's dimensions serve as supplementary encrypted dimensions, contributing azimuthally and radially, respectively. We investigate the mode selectivity of OAML and focus on the aforementioned parameters. Through experimental validation, we demonstrate the practical feasibility of OAML multiplexed holography across multiple dimensions. This groundbreaking development reveals new possibilities for the advancement of practical information encryption systems.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Orbital Angular Momentum Multiplexing Holography for Data Storage
    Zhu, Jialong
    Wang, Le
    Zhao, Shengmei
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2023, 35 (04) : 179 - 182
  • [2] Orbital Angular Momentum Multiplexing Holography Based on Radial Phase Encoding
    Li, Fajing
    Nie, Shouping
    Ma, Jun
    Yuan, Caojin
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2023, 35 (18) : 998 - 1001
  • [3] Orbital Angular Momentum Multiplexing Technology Based on Optical Fiber
    Liu Jianfei
    Xing Dengke
    Zeng Xiangye
    Lu Jia
    LASER & OPTOELECTRONICS PROGRESS, 2018, 55 (05)
  • [4] Orbital angular momentum multiplexing holography based on multiple polarization channel metasurface
    Wang, Yue
    Yao, Zhenyu
    Cui, Zijian
    Sun, Guangcheng
    Zhang, Dachi
    NANOPHOTONICS, 2023, 12 (23) : 4339 - 4349
  • [5] Identification of both orbital angular momentum and radial mode based on multiplexing holography
    Zhang, Furong
    Kong, Ling-Jun
    Zhang, Zhuo
    Zhang, Jingfeng
    Zhang, Xiangdong
    JOURNAL OF OPTICS, 2023, 25 (09)
  • [6] Depth multiplexing in an orbital angular momentum holography based on random phase encoding
    Wang, Feili
    Zhang, Xiangchao
    Xiong, Rui
    Ma, Xinyang
    Li, Leheng
    Jiang, Xiangqian
    OPTICS EXPRESS, 2022, 30 (18): : 31863 - 31871
  • [7] Orbital angular momentum deep multiplexing holography via an optical diffractive neural network
    Huang, Zebin
    He, Yanliang
    Wang, Peipei
    Xiong, Wenjie
    Wu, Haisheng
    Liu, Junmin
    Ye, Huapeng
    Li, Ying
    Fan, Dianyuan
    Chen, Shuqing
    OPTICS EXPRESS, 2022, 30 (04) : 5569 - 5584
  • [8] Design and experimental research of orbital angular momentum multiplexing holography based on optical diffraction neural network
    Geng, Shuai
    Xu, Ping
    Sun, Yiling
    Yang, Tuo
    Huang, Haixuan
    Zhang, Xulin
    Wang, Mengyu
    Li, Xiongchao
    Xiao, Yufei
    Xu, Haidong
    Wu, Yuanyang
    Li, Hongguang
    Di, Yutong
    OPTICS EXPRESS, 2024, 32 (19): : 33716 - 33727
  • [9] Orbital Angular Momentum Division Multiplexing in Optical Fibre
    Martelli, P.
    Boffi, P.
    Gatto, A.
    Martinelli, M.
    2013 15TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON 2013), 2013,
  • [10] High-dimensional orbital angular momentum multiplexing nonlinear holography
    Xinyuan Fang
    Haocheng Yang
    Wenzhe Yao
    Tianxin Wang
    Yong Zhang
    Min Gu
    Min Xiao
    Advanced Photonics, 2021, 3 (01) : 49 - 55