An Active Strategy to Reduce Residual Alkali for High-Performance Layered Oxide Cathode Materials of Sodium-Ion Batteries

被引:0
|
作者
Feng, Lihua [1 ,2 ]
Guo, Jinze [1 ,2 ]
Sun, Chujun [3 ]
Xiao, Xin [4 ]
Feng, Lijie [5 ]
Hao, Youchen [1 ,2 ]
Sun, Guojie [1 ,2 ]
Tian, Ziqi [3 ]
Li, Tingting [3 ]
Li, Yong [4 ]
Jiang, Yinzhu [1 ,2 ,6 ]
机构
[1] Zhejiang Univ, Sch Mat Sci & Engn, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Future Sci Res Inst, ZJU Hangzhou Global Sci & Technol Innovat Ctr, Hangzhou 311215, Peoples R China
[3] Huzhou Horizontal Na Energy Technol Co Ltd, Huzhou 313000, Peoples R China
[4] Nanchang Univ, Sch Phys & Mat Sci, Nanchang 330031, Peoples R China
[5] Zaozhuang Univ, Coll Chem Engn, Zaozhuang 277160, Peoples R China
[6] Baotou Res Inst Rare Earths, State Key Lab Baiyunobo Rare Earth Resource Res &, Baotou 014030, Peoples R China
基金
中国博士后科学基金;
关键词
layered transition metal oxides; residual alkali; slow cooling; sodium-ion batteries; PHASE-TRANSITION; ENERGY-STORAGE; EVOLUTION;
D O I
10.1002/smll.202403084
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Residual alkali is one of the biggest challenges for the commercialization of sodium-based layered transition metal oxide cathode materials since it can even inevitably appear during the production process. Herein, taking O3-type Na0.9Ni0.25Mn0.4Fe0.2Mg0.1Ti0.05O2 as an example, an active strategy is proposed to reduce residual alkali by slowing the cooling rate, which can be achieved in one-step preparation method. It is suggested that slow cooling can significantly enhance the internal uniformity of the material, facilitating the reintegration of Na+ into the bulk material during the calcination cooling phase, therefore substantially reducing residual alkali. The strategy can remarkably suppress the slurry gelation and gas evolution and enhance the structural stability. Compared to naturally cooled cathode materials, the capacity retention of the slowly cooled electrode material increases from 76.2% to 85.7% after 300 cycles at 1 C. This work offers a versatile approach to the development of advanced cathode materials toward practical applications. An active strategy is introduced to reduce residual alkali by slowing the cooling rate, which notably enhances the internal uniformity and facilitates the reintegration of Na+ into the bulk material, thus substantially reducing surface impurities. This strategy can remarkably suppress the slurry gelation and gas evolution while enhancing structural stability. image
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [1] Cycling performance of layered oxide cathode materials for sodium-ion batteries
    Jinpin Wu
    Junhang Tian
    Xueyi Sun
    Weidong Zhuang
    International Journal of Minerals,Metallurgy and Materials, 2024, (07) : 1720 - 1744
  • [2] Cycling performance of layered oxide cathode materials for sodium-ion batteries
    Wu, Jinpin
    Tian, Junhang
    Sun, Xueyi
    Zhuang, Weidong
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2024, 31 (07) : 1720 - 1744
  • [3] Nanostructured layered vanadium oxide as cathode for high-performance sodium-ion batteries: a perspective
    Luo, Wen
    Gaumet, Jean-Jacques
    Mai, Liqiang
    MRS COMMUNICATIONS, 2017, 7 (02) : 152 - 165
  • [4] Nanostructured layered vanadium oxide as cathode for high-performance sodium-ion batteries: a perspective
    Wen Luo
    Jean-Jacques Gaumet
    Liqiang Mai
    MRS Communications, 2017, 7 : 152 - 165
  • [5] Core-Shell Layered Oxide Cathode for High-Performance Sodium-Ion Batteries
    Chen, Cheng
    Han, Zhen
    Chen, Shuangqiang
    Qi, Shuo
    Lan, Xinyue
    Zhang, Chunchen
    Chen, Lin
    Wang, Peng
    Wei, Weifeng
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (06) : 7144 - 7152
  • [6] Zeolitic Vanadomolybdates as High-Performance Cathode-Active Materials for Sodium-Ion Batteries
    Zhang, Zhenxin
    Wang, Heng
    Yoshikawa, Hirofumi
    Matsumura, Daiju
    Hatao, Syuya
    Ishikawa, Satoshi
    Ueda, Wataru
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (05) : 6056 - 6063
  • [7] Recent Advances in Surface Coatings of Layered Cathode Materials for High-Performance Sodium-Ion Batteries
    Zhou, Yan
    Li, Laishi
    Wu, Yusheng
    Xie, Hongwei
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2023, 26 (08)
  • [8] Routes to high-performance layered oxide cathodes for sodium-ion batteries
    Wang, Jingqiang
    Zhu, Yan-Fang
    Su, Yu
    Guo, Jun-Xu
    Chen, Shuangqiang
    Liu, Hua-Kun
    Dou, Shi-Xue
    Chou, Shu-Lei
    Xiao, Yao
    CHEMICAL SOCIETY REVIEWS, 2024, 53 (08) : 4230 - 4301
  • [9] A high-performance layered Cr-Based cathode for sodium-ion batteries
    Xi, Kaiying
    Chu, Shufen
    Zhang, Xiaoyu
    Zhang, Xueping
    Zhang, Haoyang
    Xu, Hang
    Bian, Jingjing
    Fang, Tiancheng
    Guo, Shaohua
    Liu, Pan
    Chen, Mingwei
    Zhou, Haoshen
    NANO ENERGY, 2020, 67 (67)
  • [10] Recent progress on layered oxide cathode materials for sodium-ion batteries
    Jian X.-Y.
    Jin J.-T.
    Wang Y.
    Shen Q.-Y.
    Liu Y.-C.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2022, 44 (04): : 601 - 611