Inferring phylogenetic networks from multifurcating trees via cherry picking and machine learning

被引:0
|
作者
Bernardini, Giulia [1 ]
van Iersel, Leo [2 ]
Julien, Esther [2 ]
Stougie, Leen [3 ,4 ,5 ]
机构
[1] Univ Trieste, Trieste, Italy
[2] Delft Inst Appl Math, Delft, Netherlands
[3] CWI, Amsterdam, Netherlands
[4] Vrije Univ, Amsterdam, Netherlands
[5] INRIA Erable, Villeurbanne, France
关键词
Hybrid phylogeny; Hybridization problem; Cherry-picking; Machine learning; Heuristic; HYBRIDIZATION NUMBER; SET;
D O I
10.1016/j.ympev.2024.108137
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Hybridization problem asks to reconcile a set of conflicting phylogenetic trees into a single phylogenetic network with the smallest possible number of reticulation nodes. This problem is computationally hard and previous solutions are limited to small and/or severely restricted data sets, for example, a set of binary trees with the same taxon set or only two non-binary trees with non-equal taxon sets. Building on our previous work on binary trees, we present FHyNCH, the first algorithmic framework to heuristically solve the Hybridization problem for large sets of multifurcating trees whose sets of taxa may differ. Our heuristics combine the cherrypicking technique, recently proposed to solve the same problem for binary trees, with two carefully designed machine-learning models. We demonstrate that our methods are practical and produce qualitatively good solutions through experiments on both synthetic and real data sets.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Constructing phylogenetic networks via cherry picking and machine learning
    Bernardini, Giulia
    van Iersel, Leo
    Julien, Esther
    Stougie, Leen
    [J]. ALGORITHMS FOR MOLECULAR BIOLOGY, 2023, 18 (01)
  • [2] Constructing phylogenetic networks via cherry picking and machine learning
    Giulia Bernardini
    Leo van Iersel
    Esther Julien
    Leen Stougie
    [J]. Algorithms for Molecular Biology, 18
  • [3] INFERRING PHYLOGENETIC TREES FROM CHROMOSOME INVERSION DATA
    FARRIS, JS
    [J]. SYSTEMATIC ZOOLOGY, 1978, 27 (03): : 275 - 284
  • [4] Inferring Epidemic Contact Structure from Phylogenetic Trees
    Leventhal, Gabriel E.
    Kouyos, Roger
    Stadler, Tanja
    von Wyl, Viktor
    Yerly, Sabine
    Boeni, Juerg
    Cellerai, Cristina
    Klimkait, Thomas
    Guenthard, Huldrych F.
    Bonhoeffer, Sebastian
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (03)
  • [5] A fast and scalable method for inferring phylogenetic networks from trees by aligning lineage taxon strings
    Zhang, Louxin
    Abhari, Niloufar
    Colijn, Caroline
    Wu, Yufeng
    [J]. GENOME RESEARCH, 2023, 33 (07) : 1053 - 1060
  • [6] Rooting Gene Trees via Phylogenetic Networks
    Tiuryn, Jerzy
    Rutecka, Natalia
    Gorecki, Pawel
    [J]. COMPUTING AND COMBINATORICS, COCOON 2022, 2022, 13595 : 419 - 431
  • [7] Inferring turbulent environments via machine learning
    Buzzicotti, Michele
    Bonaccorso, Fabio
    [J]. EUROPEAN PHYSICAL JOURNAL E, 2022, 45 (12):
  • [8] Inferring turbulent environments via machine learning
    Michele Buzzicotti
    Fabio Bonaccorso
    [J]. The European Physical Journal E, 2022, 45
  • [9] Inferring phylogenetic trees from the knowledge of rare evolutionary events
    Marc Hellmuth
    Maribel Hernandez-Rosales
    Yangjing Long
    Peter F. Stadler
    [J]. Journal of Mathematical Biology, 2018, 76 : 1623 - 1653
  • [10] CALDER: Inferring Phylogenetic Trees from Longitudinal Tumor Samples
    Myers, Matthew A.
    Satas, Gryte
    Raphael, Benjamin J.
    [J]. CELL SYSTEMS, 2019, 8 (06) : 514 - +