Near-optimal Approximate Discrete and Continuous Submodular Function Minimization

被引:0
|
作者
Axelrod, Brian [1 ]
Liu, Yang P. [1 ]
Sidford, Aaron [1 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we provide improved running times and oracle complexities for approximately minimizing a submodular function. Our main result is a randomized algorithm, which given any submodular function defined on n-elements with range [-1, 1], computes an epsilon-additive approximate minimizer in (O) over tilde (n="2) oracle evaluations with high probability. This improves over the (O) over tilde (n(5/3)/epsilon(2)) oracle evaluation algorithm of Chakrabarty et al. (STOC 2017) and the (O) over tilde (n(3/2)/epsilon(2)) oracle evaluation algorithm of Hamoudi et al.. Further, we leverage a generalization of this result to obtain efficient algorithms for minimizing a broad class of nonconvex functions. For any function f with domain [0; 1](n) that satisfies partial derivative(2)f/partial derivative x(i)partial derivative x(j) <= 0 for all i not equal j and is L-Lipschitz with respect to the L-infinity-norm we give an algorithm that computes an epsilon-additive approximate minimizer with (O) over tilde (n.poly(L/epsilon)) function evaluation with high probability.
引用
收藏
页码:837 / 853
页数:17
相关论文
共 50 条
  • [1] Near-optimal Approximate Discrete and Continuous Submodular Function Minimization
    Axelrod, Brian
    Liu, Yang P.
    Sidford, Aaron
    PROCEEDINGS OF THE THIRTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA'20), 2020, : 837 - 853
  • [2] Decomposable Submodular Function Minimization Discrete and Continuous
    Ene, Alina
    Nguyen, Huy L.
    Vegh, Laszlo A.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [3] Near-optimal discrete optimization for experimental design: a regret minimization approach
    Allen-Zhu, Zeyuan
    Li, Yuanzhi
    Singh, Aarti
    Wang, Yining
    MATHEMATICAL PROGRAMMING, 2021, 186 (1-2) : 439 - 478
  • [4] Near-optimal discrete optimization for experimental design: a regret minimization approach
    Zeyuan Allen-Zhu
    Yuanzhi Li
    Aarti Singh
    Yining Wang
    Mathematical Programming, 2021, 186 : 439 - 478
  • [5] QUANTUM AND CLASSICAL ALGORITHMS FOR APPROXIMATE SUBMODULAR FUNCTION MINIMIZATION
    Hamoudi, Yassine
    Rebentrost, Patrick
    Rosmanis, Ansis
    Santha, Miklos
    QUANTUM INFORMATION & COMPUTATION, 2019, 19 (15-16) : 1325 - 1349
  • [6] Quantum and classical algorithms for approximate submodular function minimization
    Hamoudi, Yassine
    Rebentrost, Patrick
    Rosmanis, Ansis
    Santha, Miklos
    Quantum Information and Computation, 2019, 19 (15-16): : 1325 - 1349
  • [7] Discrete Newton's Algorithm for Parametric Submodular Function Minimization
    Goemans, Michel X.
    Gupta, Swati
    Jaillet, Patrick
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2017, 2017, 10328 : 212 - 227
  • [8] Near-Optimal Design of Experiments via Regret Minimization
    Allen-Zhu, Zeyuan
    Li, Yuanzhi
    Singh, Aarti
    Wang, Yining
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [9] Submodular function minimization
    Iwata, Satoru
    MATHEMATICAL PROGRAMMING, 2008, 112 (01) : 45 - 64
  • [10] Approximate Decomposable Submodular Function Minimization for Cardinality-Based Components
    Veldt, Nate
    Benson, Austin R.
    Kleinberg, Jon
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34