A swarm anomaly detection model for IoT UAVs based on a multi-modal denoising autoencoder and federated learning

被引:0
|
作者
Lu, Yu [1 ]
Yang, Tao [1 ]
Zhao, Chong [1 ]
Chen, Wen [2 ]
Zeng, Rong [3 ]
机构
[1] China West Normal Univ, Sch Comp Sci, Nanchong, Peoples R China
[2] Sichuan Univ, Sch Cyber Sci & Engn, Chengdu, Peoples R China
[3] China West Normal Univ, Sch Elect Informat Engn, Nanchong, Peoples R China
关键词
UAV swarm; Intrusion detection; Federated learning; Denoising autoencoder;
D O I
10.1016/j.cie.2024.110454
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The widespread application of unmanned aerial vehicle (UAV) swarms has posed unique challenges for anomaly detection. Multi-modal noise from multi-source heterogeneous sensors during UAV swarm communication affects data quality, and limited data sharing between different UAV organisations restricts training a unified anomaly detection model. To address these problems, this study proposes a UAV swarm anomaly detection model based on a multi-modal denoising autoencoder and federated learning (L-MDAE). First, L-MDAE simulates noise by adding perturbations to the original data during UAV swarm communication. Second, according to the characteristics of UAV data noise, this study designs a new MSE loss function (normalised mean square error, NMSE) based on the normalised correlation coefficient. Furthermore, heterogeneous neural networks with NMSE are constructed to enhance the multi-modal noise-removal capability of the model. Finally, this study considers the UAV control node as the client and the ground control station as the server. Using a federated learning mechanism, L-MDAE is trained on a client dataset, and its parameters are integrated and distributed on the server. In this way, each UAV can effectively detect abnormal data using L-MDAE. Experimental results on five datasets, including ALFA, TLM and ITS, demonstrate that L-MDAE outperforms baseline and related models. When using ALFA, L-MDAE achieved an accuracy of 0.9919 and a swarm anomaly detection accuracy of 0.9901, approximately 2% higher than that of the baseline model.
引用
下载
收藏
页数:22
相关论文
共 50 条
  • [1] A multi-modal sarcasm detection model based on cue learning
    Ming Lu
    Zhiqiang Dong
    Ziming Guo
    Xiaoming Zhang
    Xinxi Lu
    Tianbo Wang
    Litian Zhang
    Scientific Reports, 15 (1)
  • [2] Energy-Aware Anomaly Detection in Industrial Multi-Modal IoT Applications
    Li, Xiaocui
    Zhou, Zhangbing
    Tang, Jine
    Shu, Lei
    2019 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING & COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF PEOPLE AND SMART CITY INNOVATION (SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI 2019), 2019, : 885 - 890
  • [3] A unified framework for multi-modal federated learning
    Xiong, Baochen
    Yang, Xiaoshan
    Qi, Fan
    Xu, Changsheng
    NEUROCOMPUTING, 2022, 480 : 110 - 118
  • [4] SDN traffic anomaly detection method based on convolutional autoencoder and federated learning
    Wang, ZiXuan
    Wang, Pan
    Sun, ZhiXin
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 4154 - 4160
  • [5] A Multi-Modal Vertical Federated Learning Framework Based on Homomorphic Encryption
    Gong, Maoguo
    Zhang, Yuanqiao
    Gao, Yuan
    Qin, A. K.
    Wu, Yue
    Wang, Shanfeng
    Zhang, Yihong
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 1826 - 1839
  • [6] Federated-Learning-Based Anomaly Detection for IoT Security Attacks
    Mothukuri, Viraaji
    Khare, Prachi
    Parizi, Reza M.
    Pouriyeh, Seyedamin
    Dehghantanha, Ali
    Srivastava, Gautam
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (04) : 2545 - 2554
  • [7] Technology Agnostic Anomaly Detection using Multi-modal Sensory Data in Industrial IOT
    O'Quinn, Wesley
    Mao, Shiwen
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 4516 - 4521
  • [8] IoT Anomaly Detection Based on Autoencoder and Bayesian Gaussian Mixture Model
    Hou, Yunyun
    He, Ruiyu
    Dong, Jie
    Yang, Yangrui
    Ma, Wei
    ELECTRONICS, 2022, 11 (20)
  • [9] FedDiff: Diffusion Model Driven Federated Learning for Multi-Modal and Multi-Clients
    Li D.
    Xie W.
    Wang Z.
    Lu Y.
    Li Y.
    Fang L.
    IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34 (10) : 1 - 1
  • [10] Enhancing IoT Anomaly Detection Performance for Federated Learning
    Weinger, Brett
    Kim, Jinoh
    Sim, Alex
    Nakashima, Makiya
    Moustafa, Nour
    Wu, K. John
    2020 16TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING (MSN 2020), 2020, : 206 - 213