Piezoelectricity in wide bandgap semiconductor 2D crystal GaN nanosheets

被引:0
|
作者
Wang, Yong [1 ]
Wang, Shaopeng [1 ,2 ]
Zhang, Yu [3 ]
Cheng, Zixuan [1 ]
Yang, Dingyi [1 ,4 ]
Wang, Yongmei [2 ]
Wang, Tingting [5 ]
Cheng, Liang [5 ]
Wu, Yizhang [6 ]
Hao, Yue [1 ]
机构
[1] Xidian Univ, Acad Adv Interdisciplinary Res, State Key Discipline Lab Wide Band Gap Semicond Te, Xian 710071, Peoples R China
[2] Xidian Univ, Sch Adv Mat & Nanotechnol, Xian 710126, Peoples R China
[3] Shaanxi Univ Sci & Technol, Dept Phys, Xian 710021, Peoples R China
[4] INRS Ctr Energy Mat & Telecommun, 1650 Boul Lionel Boulet, Varennes, PQ J3X 1P7, Canada
[5] Ningxia Univ, Sch Phys, 489 Helanshan Rd, Yinchuan 750021, Peoples R China
[6] Univ North Carolina Chapel Hill, Dept Appl Phys Sci, Chapel Hill, NC 27514 USA
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
ARRAY;
D O I
10.1039/d4nr01377h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Gallium nitride (GaN) exhibits various potential applications in optics and optoelectronics due to its outstanding physical characteristics, including a wide direct bandgap, strong deep-ultraviolet emission, and excellent electron transport properties. However, research on the piezoelectric and related properties of GaN nanosheets are scarce, as previous small-scale GaN investigations have mainly concentrated on nanowires and nanotubes. Here, we report a strategy for growing 2D GaN nanosheets using chemical vapor deposition on Ga/W liquid-phase substrates. Additionally, utilizing scanning probe techniques, it has been observed that 700 nm-thick GaN nanosheets demonstrate a piezoelectric constant of deff33 = 1.53 +/- 0.21 pm V-1 and possess the capability to effectively modulate the Schottky barrier. The piezoelectric characteristics of 2D GaN are offering new options for innovative applications in various fields, including energy harvesting, electronics, sensing, and communications. 2D GaN nanosheets can grow on Ga/W liquid-phase substrates by CVD. 700 nm-thick GaN nanosheets have a piezoelectric constant of deff33 = 1.53 +/- 0.21 pm V-1 and possess the capability to effectively modulate the Schottky barrier.
引用
收藏
页码:15170 / 15175
页数:6
相关论文
共 50 条
  • [1] SiC and GaN wide bandgap semiconductor materials and devices
    Burk, AA
    O'Loughlin, MJ
    Siergiej, RR
    Agarwal, AK
    Sriram, S
    Clarke, RC
    MacMillan, MF
    Balakrishna, V
    Brandt, CD
    [J]. SOLID-STATE ELECTRONICS, 1999, 43 (08) : 1459 - 1464
  • [2] Integrated photonics on silicon with wide bandgap GaN semiconductor
    Trivino, N. Vico
    Dharanipathy, U.
    Carlin, J. -F.
    Diao, Z.
    Houdre, R.
    Grandjean, N.
    [J]. APPLIED PHYSICS LETTERS, 2013, 102 (08)
  • [3] Air-Stable Wide-Bandgap 2D Semiconductor ZnIn2S4
    Weng Shirui
    Zhen Weili
    Li Yaodong
    Yan Xiu
    Han Hui
    Huang Hui
    Pi Li
    Zhu Wenka
    Li Hui
    Zhang Changjin
    [J]. PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2020, 14 (07):
  • [4] Semiconductor 3D and 2D photonic bandgap structures
    Noda, S
    [J]. CLEO(R)/PACIFIC RIM 2001, VOL I, TECHNICAL DIGEST, 2001, : 18 - 19
  • [5] First-Principles Prediction of New 2D p-SiPN: A Wide Bandgap Semiconductor
    Sharma, Shambhu Bhandari
    Qattan, Issam
    Santosh, K. C.
    Abedrabbo, Sufian
    [J]. NANOMATERIALS, 2022, 12 (22)
  • [6] Machine Vision Based on an Ultra-Wide Bandgap 2D Semiconductor AsSbO3
    Long, Haoran
    Liu, Hao
    Wang, Xiaoyu
    Wang, Bowen
    Bai, Ruixue
    Yu, Yali
    Xin, Kaiyao
    Liu, Liyuan
    Xu, Yingqiang
    Zhang, Jing
    Jiang, Fagang
    Wang, Xinghua
    Wei, Zhongming
    Yang, Juehan
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (49)
  • [7] Monolayer GaOCl: a novel wide-bandgap 2D material with hole-doping-induced ferromagnetism and multidirectional piezoelectricity
    Jiang, Shujuan
    Yin, Huabing
    Zheng, Guang-Ping
    [J]. NANOSCALE, 2022, 14 (31) : 11369 - 11377
  • [8] Releasable AlGaN/GaN 2D Electron Gas Heterostructure Membranes for Flexible Wide-Bandgap Electronics
    Zhang, Yi-Yu
    An, Shu
    Zheng, Yixiong
    Lai, Junyu
    Seo, Jung-Hun
    Lee, Kwang Hong
    Kim, Munho
    [J]. ADVANCED ELECTRONIC MATERIALS, 2022, 8 (02)
  • [9] Self-Confined Growth of Ultrathin 2D Nonlayered Wide-Bandgap Semiconductor CuBr Flakes
    Gong, Chuanhui
    Chu, Junwei
    Yin, Chujun
    Yan, Chaoyi
    Hu, Xiaozong
    Qian, Shifeng
    Hu, Yin
    Hu, Kai
    Huang, Jianwen
    Wang, Hongbo
    Wang, Yang
    Wangyang, Peihua
    Lei, Tianyu
    Dai, Liping
    Wu, Chunyang
    Chen, Bo
    Li, Chaobo
    Liao, Min
    Zhai, Tianyou
    Xiong, Jie
    [J]. ADVANCED MATERIALS, 2019, 31 (36)
  • [10] Layer-Dependent Raman Spectroscopy and Electronic Applications of Wide-Bandgap 2D Semiconductor β-ZrNCl
    Nong, Huiyu
    Wu, Qinke
    Tan, Junyang
    Sun, Yujie
    Zheng, Rongxu
    Zhang, Rongjie
    Zhao, Shilong
    Liu, Bilu
    [J]. SMALL, 2022, 18 (14)