Ir(III)-Based Photosensitizer-Loaded M1 Macrophage Exosomes for Synergistic Photodynamic Therapy

被引:2
|
作者
Kang, Tianyi [1 ]
Wu, Xue [1 ,2 ]
Wang, Fangliang [1 ]
Shi, Yuxin [1 ]
Wei, Fangfang [1 ]
Dong, Ming [2 ,3 ]
Xiao, Shuting [2 ]
Qian, Yuhan [1 ]
Zha, Menglei [1 ]
Li, Chong [1 ]
Chen, Feng [1 ]
Li, Kai [1 ]
机构
[1] Southern Univ Sci & Technol SUSTech, Dept Biomed Engn, Guangdong Prov Key Lab Adv Biomat, Shenzhen 518055, Peoples R China
[2] Guangzhou Int Bio Isl, Guangzhou Natl Lab, 9 XingDaoHuanBei Rd, Guangzhou 510005, Guangdong, Peoples R China
[3] Guangzhou Med Univ, Affiliated Hosp 1, State Key Lab Resp Dis, Guangzhou 510120, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
donor-acceptor; energy level springboard; iridium(III) complex; M1; exosomes; photodynamic therapy; EMISSION AIE DOTS; MOLECULAR DESIGN; ORGANIC DOTS;
D O I
10.1002/adfm.202408142
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The synthesis of organic photosensitizers with effective reactive oxygen species (ROS) generation remains one of the urgent needs for cancer therapy. In this study, a simple strategy is developed to endow the intrinsic non-photosensitizer fluorophores with profound ROS-generating ability upon light irradiation. This strategy is featured by introducing donor-acceptor (D-A) structured fluorophores as auxiliary ligands into the Ir(III) metal complex, which provides the Ir(III) metal center-based triplet state (T1) as an energy level springboard to efficiently enhance the energy transition to the D-A ligand-based triplet state (T1'). The energy level difference between T1 and T1' can be regulated through altering the cyclometalated ligands of Ir(III), facilitating the energy transfer from T1 to T1' for augmented ROS generation. To improve the pharmacological properties of the obtained D-A coordinated Ir(III) complex, it is incorporated with the exosomes extracted from M1 phenotype macrophages (M1-Exos). The generated nanocomplexes are able to trigger synergistic photodynamic therapy, facilitating the reprogramming of tumor-associated macrophages and eradicating the tumors in mice. This study provides a general strategy to transform non-photosensitizer fluorophores into effective photosensitizers for biomedical applications. In this work, a universal strategy is provided for transforming non-photosensitizer D-A fluorophores with ultra-poor ROS generation into effective photosensitizers and demonstrate their therapeutic potency using M1 macrophage exosomes as the delivery vesicle for photodynamic therapy. image
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A Photosensitizer-Loaded Polydopamine Nanomedicine Agent for Synergistic Photodynamic and Photothermal Therapy
    Yan, Shufeng
    Dong, Luying
    Hu, Ziyun
    Zhang, Yucheng
    Xu, Wei
    Xing, Jianhong
    Zhang, Juncheng
    MOLECULES, 2023, 28 (15):
  • [2] A Photosensitizer-Loaded DNA Origami Nanosystem for Photodynamic Therapy
    Zhuang, Xiaoxi
    Ma, Xiaowei
    Xue, Xiangdong
    Jiang, Qiao
    Song, Linlin
    Dai, Luru
    Zhang, Chunqiu
    Jin, Shubin
    Yang, Keni
    Ding, Baoquan
    Wang, Paul C.
    Liang, Xing-Jie
    ACS NANO, 2016, 10 (03) : 3486 - 3495
  • [3] Light-independent M1 macrophage polarization by photosensitizer-loaded protein corona on gold nanorods
    Cheah, Joshua U-Jin
    Low, Heng Boon
    Zhang, Yongliang
    Yong Kah, James Chen
    NANOMEDICINE, 2020, 15 (24) : 2329 - 2344
  • [4] Supramolecular Photosensitizer-Loaded Spray Hydrogel for Antibacterial Photodynamic Therapy
    Fang, Xi-Jia
    Wang, Lufang
    Zhou, Na
    Ruan, Yi-Ru
    Xiong, Ren-Yi
    Wang, Zhengxi
    Wang, Wenjing
    ACS APPLIED POLYMER MATERIALS, 2024, 6 (21): : 13341 - 13349
  • [5] Photosensitizer-loaded electrospun chitosan-based scaffolds for photodynamic therapy and tissue engineering
    Severyukhina, A. N.
    Petrova, N. V.
    Smuda, K.
    Terentyuk, G. S.
    Klebtsov, B. N.
    Georgieva, R.
    Baeumler, H.
    Gorin, D. A.
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2016, 144 : 57 - 64
  • [6] Preparation, characterization and cellular studies of photosensitizer-loaded lipid nanoparticles for photodynamic therapy
    Navarro, Fabrice P.
    Bechet, Denise
    Delmas, Thomas
    Couleaud, Pierre
    Frochot, Celine
    Verhille, Marc
    Kamarulzaman, Ezatul
    Vanderesse, Regis
    Boisseau, Patrick
    Texier, Isabelle
    Gravier, Julien
    Vinet, Francoise
    Barberi-Heyob, Muriel
    Couffin, Anne Claude
    OPTICAL METHODS FOR TUMOR TREATMENT AND DETECTION: MECHANISMS AND TECHNIQUES IN PHOTODYNAMIC THERAPY XX, 2011, 7886
  • [7] Biolistic Delivery of Photosensitizer-Loaded Porous Si Carriers for Localized Photodynamic Therapy
    Haimov-Talmoud, Elina
    Rosenberg, Michal
    Arshavsky-Graham, Sofia
    Varon, Eli
    Shefi, Orit
    Segal, Ester
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (23)
  • [8] Calcium Phosphate-Reinforced Photosensitizer-Loaded Polymer Nanoparticles for Photodynamic Therapy
    Lee, Sang-Uk
    Min, Kyung Hyun
    Jeong, Seo Young
    Bae, Hojae
    Lee, Sang Cheon
    CHEMISTRY-AN ASIAN JOURNAL, 2013, 8 (12) : 3222 - 3229
  • [9] Photosensitizer-loaded gold nanorods for near infrared photodynamic and photothermal cancer therapy
    Bhana, Saheel
    O'Connor, Ryan
    Johnson, Jermaine
    Ziebarth, Jesse D.
    Henderson, Luke
    Huang, Xiaohua
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2016, 469 : 8 - 16
  • [10] AIEgen Photosensitizer-Loaded Silica Nanoparticles for Lysosomes-Targeting Photodynamic Therapy in Tumor
    Zhao, Mingyan
    Zhang, Wenguang
    Fan, Miaozhuang
    Xu, Zhourui
    Jiang, Yihang
    Li, Zhengzheng
    Zhai, Peng
    Zhang, Xinmeng
    Chen, Ting
    Zhang, Yibin
    Yang, Chengbin
    Li, Longfei
    Feng, Gang
    Xu, Gaixia
    ACS APPLIED NANO MATERIALS, 2024, 7 (20) : 23504 - 23512