Demographic inference for spatially heterogeneous populations using long shared haplotypes

被引:0
|
作者
Forien, Raphael [1 ]
Ringbauer, Harald [2 ]
Coop, Graham [3 ]
机构
[1] Ctr INRAE PACA, INRAE BioSP, 228 route aerodrome, F-84914 Avignon 9, France
[2] Max Planck Inst Evolutionary Anthropol, Dept Archaeogenet, Deutsch Pl 6, D-04103 Leipzig, Germany
[3] Univ Calif Davis, Ctr Populat Biol, Dept Evolut & Ecol, 2320 Storer Hall, Davis, CA 95616 USA
基金
美国国家卫生研究院;
关键词
Population genetics; Spatial A-Fleming-Viot process; Spatial coalescent; Segments of shared haplotypes; Skew Brownian motion; Isolation by distance; STEPPING STONE MODEL; DETECTING IDENTITY; STATISTICS; MIGRATION; DISTANCE; GENETICS; SEGMENTS;
D O I
10.1016/j.tpb.2024.03.002
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
We introduce a modified spatial Lambda-Fleming-Viot process to model the ancestry of individuals in a population occupying a continuous spatial habitat divided into two areas by a sharp discontinuity of the dispersal rate and effective population density. We derive an analytical formula for the expected number of shared haplotype segments between two individuals depending on their sampling locations. This formula involves the transition density of a skew diffusion which appears as a scaling limit of the ancestral lineages of individuals in this model. We then show that this formula can be used to infer the dispersal parameters and the effective population density of both regions, using a composite likelihood approach, and we demonstrate the efficiency of this method on a range of simulated data sets.
引用
收藏
页码:108 / 124
页数:17
相关论文
共 50 条
  • [1] The Architecture of Long-Range Haplotypes Shared within and across Populations
    Gusev, Alexander
    Palamara, Pier Francesco
    Aponte, Gregory
    Zhuang, Zhong
    Darvasi, Ariel
    Gregersen, Peter
    Pe'er, Itsik
    MOLECULAR BIOLOGY AND EVOLUTION, 2012, 29 (02) : 473 - 486
  • [2] Phenotypically heterogeneous populations in spatially heterogeneous environments
    Patra, Pintu
    Klumpp, Stefan
    PHYSICAL REVIEW E, 2014, 89 (03):
  • [3] Spatially explicit inference for open populations: estimating demographic parameters from camera-trap studies
    Gardner, Beth
    Reppucci, Juan
    Lucherini, Mauro
    Royle, J. Andrew
    ECOLOGY, 2010, 91 (11) : 3376 - 3383
  • [4] The evolution of cooperation in spatially heterogeneous populations
    Ferriere, R
    Michod, RE
    AMERICAN NATURALIST, 1996, 147 (05): : 692 - 717
  • [5] Demographic inference under a spatially continuous coalescent model
    Joseph, T. A.
    Hickerson, M. J.
    Alvarado-Serrano, D. F.
    HEREDITY, 2016, 117 (02) : 94 - 99
  • [6] Demographic inference under a spatially continuous coalescent model
    T A Joseph
    M J Hickerson
    D F Alvarado-Serrano
    Heredity, 2016, 117 : 94 - 99
  • [7] Inference of haplotypes from samples of diploid populations: Complexity and algorithms
    Gusfield, D
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2001, 8 (03) : 305 - 323
  • [8] Demogenomic inference from spatially and temporally heterogeneous samples
    Marchi, Nina
    Kapopoulou, Adamandia
    Excoffier, Laurent
    MOLECULAR ECOLOGY RESOURCES, 2024, 24 (01)
  • [9] The adaptive dynamics of altruism in spatially heterogeneous populations
    Le Galliard, JF
    Ferrière, R
    Dieckmann, U
    EVOLUTION, 2003, 57 (01) : 1 - 17
  • [10] Shared resources and disease dynamics in spatially structured populations
    Nunn, Charles L.
    Thrall, Peter H.
    Kappeler, Peter M.
    ECOLOGICAL MODELLING, 2014, 272 : 198 - 207