Euler Polynomials and Bi-univalent Functions

被引:0
|
作者
Amourah, Ala [1 ,2 ]
Jarwan, Dunia Alawi [3 ]
Salah, Jamal [4 ]
Mohammed, M. J. [3 ]
Meqdad, Saad A. [5 ]
Anakira, Nidal [1 ]
机构
[1] Sohar Univ, Fac Educ & Arts, Math Educ Program, Sohar, Oman
[2] Jadara Univ, Jadara Res Ctr, Irbid 21110, Jordan
[3] Univ Anbar, Coll Sci, Dept Math, Ramadi, Iraq
[4] ASharqiyah Univ, Coll Appl & Hlth Sci, Post Box 42, Ibra 400, Oman
[5] Appl Sci Private Univ, Amman, Jordan
来源
关键词
Key Words and Phrases; Analytic functions; Univalent functions; Bi-univalent functions; Euler polynomials; Fekete-Szego<spacing diaeresis> problem; ANALYTIC-FUNCTIONS; SUBCLASSES; SUBORDINATION;
D O I
10.29020/nybg.ejpam.v17i3.5314
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our research introduces new subclasses of analytical functions that are defined by Euler polynomials. We then proceed to estimate the Fekete-Szego<spacing diaeresis> functional problem and the Maclaurin coefficients for this specific subfamily, denoted as a 2 and a 3 . Furthermore, we demonstrate several new results that emerge when we specialize the parameters used in our main findings.
引用
收藏
页码:1948 / 1958
页数:11
相关论文
共 50 条
  • [1] Jacobi polynomials and bi-univalent functions
    Amourah, Ala
    Anakira, Nidal
    Mohammed, M. J.
    Jasim, Malath
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (04): : 957 - 968
  • [2] A Generalization of Gegenbauer Polynomials and Bi-Univalent Functions
    Amourah, Ala
    Alsoboh, Abdullah
    Ogilat, Osama
    Gharib, Gharib Mousa
    Saadeh, Rania
    Al Soudi, Maha
    AXIOMS, 2023, 12 (02)
  • [3] Subclasses of bi-univalent functions subordinate to gegenbauer polynomials
    Ala Amourah
    Zabidin Salleh
    B. A. Frasin
    Muhammad Ghaffar Khan
    Bakhtiar Ahmad
    Afrika Matematika, 2023, 34
  • [4] Subclasses of bi-univalent functions subordinate to gegenbauer polynomials
    Amourah, Ala
    Salleh, Zabidin
    Frasin, B. A.
    Khan, Muhammad Ghaffar
    Ahmad, Bakhtiar
    AFRIKA MATEMATIKA, 2023, 34 (03)
  • [5] Certain subclasses of bi-univalent functions defined by Chebyshev polynomials
    Sivasankari, V.
    Karthiyayini, O.
    Magesh, N.
    AFRIKA MATEMATIKA, 2021, 32 (1-2) : 89 - 103
  • [6] Certain Subclasses of Bi-Univalent Functions Associated with the Horadam Polynomials
    Srivastava, H. M.
    Altinkaya, Sahsene
    Yalcin, Sibel
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A4): : 1873 - 1879
  • [7] Certain classes of bi-univalent functions associated with the Horadam polynomials
    Orhan, Halit
    Mamatha, Paduvalapattana Kempegowda
    Swamy, Sondekola Rudra
    Magesh, Nanjundan
    Yamini, Jagadeesan
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2021, 13 (01) : 258 - 272
  • [8] (p, g)-CHEBYSHEV POLYNOMIALS AND THEIR APPLICATIONS TO BI-UNIVALENT FUNCTIONS
    Amourah, A.
    Abdelkarim, H.
    Alelaumi, A.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2022, 12 (02): : 481 - 486
  • [9] Certain Subclasses of Bi-Univalent Functions Associated with the Horadam Polynomials
    H. M. Srivastava
    Şahsene Altınkaya
    Sibel Yalçın
    Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43 : 1873 - 1879
  • [10] Certain subclasses of bi-univalent functions defined by Chebyshev polynomials
    V. Sivasankari
    O. Karthiyayini
    N. Magesh
    Afrika Matematika, 2021, 32 : 89 - 103