Unveiling skin cancer insights by Fourier domain optical coherence tomography modeling

被引:0
|
作者
Khalid, Ramna [1 ,2 ]
Jabbar, Abdul [2 ]
Cabrera, Humberto [1 ]
Mehmood, Muhammad Qasim [2 ]
Zubair, Muhammad [3 ]
机构
[1] Abdus Salam Int Ctr Theoret Phys, STI Unit, IMLab, Str Costiera 11, I-34151 Trieste, Italy
[2] Informat Technol Univ Punjab ITU, Dept Elect Engn, Lahore 54000, Pakistan
[3] KAUST, ITL, Thuwal 23955, Saudi Arabia
来源
关键词
FD-OCT; non-invasive; skin cancer; DIELECTRIC METASURFACE; ULTRAHIGH-RESOLUTION; DIAGNOSIS; MANAGEMENT; MELANOMA;
D O I
10.1117/12.3022056
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Skin cancer, one of the most prevalent forms of cancer worldwide, poses a significant health threat, emphasizing the need for accurate and efficient diagnostic tools. Fourier Domain Optical Coherence Tomography (FD-OCT) has emerged as a non-invasive imaging technique, offering high-resolution visualization of skin tissue structures for early detection and precise characterization of skin cancer lesions. Our study focuses on the modeling of FD-OCT for skin cancer diagnosis, highlighting its potential to improve diagnostic precision and treatment outcomes. We have simulated the light-tissue interactions and employed sophisticated Fourier domain signal processing models that reconstruct detailed cross-sectional skin images with enhanced spatial resolution. This proposed approach can accurately detect minute fluctuations in tissue morphology, thereby assisting in the detection of critical diagnostic indicators for various forms of skin cancer. FD-OCT enhances the ability to observe cellular and morphological intricacies, allowing for precise differentiation of benign from malignant skin lesions through the examination of characteristics including epidermal thickness, integrity of the dermalepidermal junction, and the existence of aberrant structures beneath the skin layers. Real-time evaluation is made possible by the non-invasive nature of the proposed FD-OCT imaging, which eliminates the need for invasive biopsies and reduces patient distress. Our findings underscored the potential of FD-OCT as an early-stage skin cancer detection tool, facilitating timely treatment strategies and contributing to improved patient prognosis and survival rates. In conclusion, FD-OCT offers a promising avenue for enhancing the accuracy, efficiency, and accessibility of skin cancer diagnosis, emphasizing its crucial role in advancing personalized and effective dermatological care.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Scattering imaging of skin in Fourier domain optical coherence tomography
    Guo, Xin
    Bu, Peng
    Wang, Xiangzhao
    Sasaki, Osami
    Nan, Nan
    Huang, Bingjie
    Li, Zhongliang
    OPTICS COMMUNICATIONS, 2013, 305 : 137 - 142
  • [2] Fourier domain quantum optical coherence tomography
    Kolenderska, Sylwia M.
    Vanholsbeeck, Frederique
    Kolenderski, Piotr
    OPTICS EXPRESS, 2020, 28 (20) : 29576 - 29589
  • [3] Synthetic Fourier Domain Optical Coherence Tomography
    Alexandrov, Sergey
    McAuley, Ryan
    Dey, Rajib
    Arangath, Anand
    Zhou, Yi
    Nolan, Andrew
    Owens, Peter
    Leahy, Martin
    ADVANCED PHOTONICS RESEARCH, 2024, 5 (04):
  • [4] Fourier domain functional optical coherence tomography
    Zhang, J
    Rao, B
    Chen, ZP
    SARATOV FALL MEETING 2004: OPTICAL TECHNOLOGIES IN BIOPHYSICS AND MEDICINE VI, 2005, 5771 : 8 - 14
  • [5] Spectroscopic Fourier domain optical coherence tomography
    Kasseck, Christoph
    Lehmann, Kirsten
    Gerhardt, Nils C.
    Hofmann, Martin
    OPTICAL COHERENCE TOMOGRAPHY AND COHERENCE TECHNIQUES III, 2007, 6627
  • [6] Fourier phase in Fourier-domain optical coherence tomography
    Uttam, Shikhar
    Liu, Yang
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2015, 32 (12) : 2286 - 2306
  • [7] Fourier-Domain Optical Coherence Tomography Signal Analysis and Numerical Modeling
    Kalkman, J.
    INTERNATIONAL JOURNAL OF OPTICS, 2017, 2017
  • [8] Dispersion compensation in Fourier domain optical coherence tomography
    Al-Saeed, Tarek A.
    Shalaby, Mohamed Y.
    Khalil, Diaa A.
    APPLIED OPTICS, 2014, 53 (29) : 6643 - 6653
  • [9] Ultrahigh resolution Fourier domain optical coherence tomography
    Leitgeb, RA
    Drexler, W
    Unterhuber, A
    Hermann, B
    Bajraszewski, T
    Le, T
    Stingl, A
    Fercher, AF
    OPTICS EXPRESS, 2004, 12 (10): : 2156 - 2165
  • [10] Intraretinal Segmentation on Fourier Domain Optical Coherence Tomography
    Huang, Jingjing
    Liu, Xing
    Wu, Zigiang
    Cao, Dan
    Sadda, Srinivas
    ANNALS ACADEMY OF MEDICINE SINGAPORE, 2010, 39 (07) : 518 - 524