Pointwise convergence problem of the one-dimensional Boussinesq-type equation

被引:0
|
作者
Wang, Weimin [1 ]
Yan, Wei [1 ]
Zhang, Yating [1 ]
机构
[1] Henan Normal Univ, Sch Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
关键词
Boussinesq equation; pointwise convergence problem; Strichartz estimates; LOCAL WELL-POSEDNESS; MAXIMAL-FUNCTION; SCHRODINGER-EQUATIONS; GLOBAL EXISTENCE; SOBOLEV SPACES; SCATTERING; REGULARITY; STABILITY;
D O I
10.1002/mma.10408
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the initial data problem of the one-dimensional Boussinesq-type equation. Inspired by the work of Compaan et al. (Int. Math. Res. Not. 2021, 599-650), by using the Fourier restriction norm method, we investigate the pointwise convergence of the one-dimensional Boussinesq equation and cubic Boussinesq equation. We also only use the Strichartz estimates instead of Fourier restriction norm method to establish convergence conclusions of the one-dimensional cubic Boussinesq equation. The key ingredients are some Strichartz estimates and high-low frequency decomposition related to the nonlinear part of the integral form solution in the Duhamel form and the maximal function estimate related to inhomogeneous estimate.
引用
收藏
页码:1750 / 1767
页数:18
相关论文
共 50 条