Real-Time Vehicle Detection Using YOLOv8-Nano for Intelligent Transportation Systems

被引:0
|
作者
Bakirci, Murat [1 ]
机构
[1] Tarsus Univ, Fac Aeronaut & Astronaut, Unmanned Intelligent Syst Lab, TR-33400 Mersin, Turkiye
关键词
vehicle detection; YOLOv8; aerial monitoring; intelligent transportation systems; UAV; RECOGNITION; YOLOV5;
D O I
10.18280/ts.410407
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, deep learning models have seen extensive use in various domains, with the YOLO algorithm family emerging as a prominent player. YOLOv5, known for its real-time object detection capabilities and high accuracy, has been widely embraced in transportation- related research. However, the introduction of YOLOv8 in early 2023 signifies a significant leap forward in object detection technology. Despite its potential, the literature on YOLOv8 remains relatively scarce, leaving room for exploration and adoption in research. This study pioneers real-time vehicle detection using the YOLOv8 algorithm. An in-depth analysis of YOLOv8n, the smallest scale model within the YOLOv8 series, was conducted to assess its suitability for real-time scenarios, particularly in Intelligent Transportation Systems (ITS). To reinforce its real-time capabilities, a parametric analysis covering image processing time, detection sensitivity, and input image characteristics was performed. To optimize model performance, a training dataset was created through flight tests using a custom autonomous drone, encompassing various vehicle variations. This ensures that the model excels in recognizing diverse motor vehicle configurations. The results reveal that even this compact sub-model achieves an impressive detection accuracy rate exceeding 80%. The study establishes that YOLOv8n, evaluated for the first time in ITS applications, effectively serves as an object detector for real-time smart traffic management.
引用
收藏
页码:1727 / 1740
页数:14
相关论文
共 50 条
  • [1] A real-time traffic sign detection in intelligent transportation system using YOLOv8-based deep learning approach
    Tang, Mingdeng
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (8-9) : 6103 - 6113
  • [2] YOLOv8-FDD: A Real-Time Vehicle Detection Method Based on Improved YOLOv8
    Liu, Xiaojia
    Wang, Yipeng
    Yu, Dexin
    Yuan, Zimin
    IEEE ACCESS, 2024, 12 : 136280 - 136296
  • [3] Real-time DDoS flooding attack detection in intelligent transportation systems
    Karthikeyan, H.
    Usha, G.
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 101
  • [4] Real-Time Detection and Mitigation of DDoS Attacks in Intelligent Transportation Systems
    Haydari, Ammar
    Yilmaz, Yasin
    2018 21ST INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2018, : 157 - 163
  • [5] Real-Time Vehicles Detection with YOLOv8
    Lin, Chih-Jer
    Lee, Chi-Mo
    2024 11TH INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS-TAIWAN, ICCE-TAIWAN 2024, 2024, : 805 - 806
  • [6] AI-Driven Real-Time Incident Detection for Intelligent Transportation Systems
    Gkioka, Georgia
    Dominguez, Monica
    Tympakianaki, Athina
    Mentzas, Gregoris
    EMERGING CUTTING-EDGE DEVELOPMENTS IN INTELLIGENT TRAFFIC AND TRANSPORTATION SYSTEMS, ICITT 2023/ICCNT, 2024, 50 : 56 - 68
  • [7] Enhancing vehicle detection in intelligent transportation systems via autonomous UAV platform and YOLOv8 integration
    Bakirci, Murat
    APPLIED SOFT COMPUTING, 2024, 164
  • [8] Quantizing YOLOv5 for Real-Time Vehicle Detection
    Zhang, Zicheng
    Xu, Hongke
    Lin, Shan
    IEEE ACCESS, 2023, 11 : 145601 - 145611
  • [9] Real-Time Banana Ripeness Detection and Classification using YOLOv8
    Baldovino, Renann G.
    Lim, Raphael Antoine U.
    Salvador, Patrick Reylie R.
    Tiamzon, Euri Andre P.
    9TH INTERNATIONAL CONFERENCE ON MECHATRONICS ENGINEERING, ICOM 2024, 2024, : 219 - 223
  • [10] Real-Time Drowsiness Detection System for an Intelligent Vehicle
    Javier Flores, Marco
    Maria Armingol, Jose
    de la Escalera, Arturo
    2008 IEEE INTELLIGENT VEHICLES SYMPOSIUM, VOLS 1-3, 2008, : 1 - +