Some Fractional Integral and Derivative Formulas Revisited

被引:1
|
作者
Gonzalez-Santander, Juan Luis [1 ]
Mainardi, Francesco [2 ,3 ]
机构
[1] Univ Oviedo, Dept Math, C Leopoldo Calvo Sotelo 18, Oviedo 33007, Spain
[2] Univ Bologna, Dept Phys & Astron, Via Irnerio 46, I-40126 Bologna, Italy
[3] INFN, Via Irnerio 46, I-40126 Bologna, Italy
关键词
Riemann-Liouville fractional integral; Riemann-Liouville fractional derivative; Weyl fractional integral; Weyl fractional derivative;
D O I
10.3390/math12172786
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the most common literature about fractional calculus, we find that Dt alpha aft=It-alpha aft is assumed implicitly in the tables of fractional integrals and derivatives. However, this is not straightforward from the definitions of It alpha aft and Dt alpha aft. In this sense, we prove that Dt0ft=It-alpha 0ft is true for ft=t nu-1logt, and ft=e lambda t, despite the fact that these derivations are highly non-trivial. Moreover, the corresponding formulas for Dt alpha-infinity t-delta and It alpha-infinity t-delta found in the literature are incorrect; thus, we derive the correct ones, proving in turn that Dt alpha-infinity t-delta=It-alpha-infinity t-delta holds true.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Unified fractional integral and derivative formulas, integral transforms of incomplete τ-hypergeometric function
    Suthar, D. L.
    Chandak, S.
    Amsalu, Hafte
    AFRIKA MATEMATIKA, 2021, 32 (3-4) : 599 - 620
  • [2] SOME INTEGRAL TRANSFORMS AND FRACTIONAL INTEGRAL FORMULAS FOR THE EXTENDED HYPERGEOMETRIC FUNCTIONS
    Agarwal, Praveen
    Choi, Junesang
    Kachhia, Krunal B.
    Prajapati, Jyotindra C.
    Zhou, Hui
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 31 (03): : 591 - 601
  • [3] On some properties of fractional dyadic derivative and integral
    Golubov B.I.
    Analysis Mathematica, 2006, 32 (3) : 173 - 205
  • [4] Some New Fractional Integral Inequalities in the Sense of Conformable Fractional Derivative
    Zheng, Bin
    ENGINEERING LETTERS, 2019, 27 (02) : 287 - 294
  • [5] A Family of the Incomplete Hypergeometric Functions and Associated Integral Transform and Fractional Derivative Formulas
    Srivastava, Rekha
    Agarwal, Ritu
    Jain, Sonal
    FILOMAT, 2017, 31 (01) : 125 - 140
  • [6] Some Generalized Formulas of Hadamard-Type Fractional Integral Inequalities
    Zhang, Xiujun
    Farid, Ghulam
    Yasmeen, Hafsa
    Nonlaopon, Kamsing
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [7] Fractional Integral Operators Characterized by Some New Hypergeometric Summation Formulas
    Min-Jie Luo
    Ravinder Krishna Raina
    Fractional Calculus and Applied Analysis, 2017, 20 : 422 - 446
  • [8] FRACTIONAL INTEGRAL OPERATORS CHARACTERIZED BY SOME NEW HYPERGEOMETRIC SUMMATION FORMULAS
    Luo, Min-Jie
    Raina, Ravinder Krishna
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (02) : 422 - 446
  • [9] Novel Integral Transform Treating Some Ψ-Fractional Derivative Equations
    Chamekh, Mourad
    Latrach, Mohamed Ali
    Elzaki, Tarig M.
    ACTA MECHANICA ET AUTOMATICA, 2024, 18 (03) : 571 - 578
  • [10] EXPANSION FORMULAS IN TERMS OF INTEGER-ORDER DERIVATIVES FOR THE HADAMARD FRACTIONAL INTEGRAL AND DERIVATIVE
    Pooseh, Shakoor
    Almeida, Ricardo
    Torres, Delfim F. M.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2012, 33 (03) : 301 - 319