Neural network-based nonlinear model predictive control with anti-dead-zone function for magnetic shape memory alloy actuator

被引:1
|
作者
Su, Liangcai [1 ]
Zhang, Chen [1 ]
Yu, Yewei [1 ]
Zhang, Xiuyu [2 ]
Su, Chun-Yi [3 ]
Zhou, Miaolei [1 ]
机构
[1] Jilin Univ, Dept Control Sci & Engn, Changchun 130022, Peoples R China
[2] Northeast Elect Power Univ, Sch Automat Engn, Jilin 132012, Jilin, Peoples R China
[3] Concordia Univ, Gina Cody Sch Engn & Comp Sci, Montreal, PQ H3G 1M8, Canada
基金
中国国家自然科学基金;
关键词
Magnetic shape memory alloy; Hysteresis; Nonlinear model; Anti-dead-zone function; Gated recurrent neural network; Nonlinear model predictive control; TRACKING CONTROL; HYSTERESIS; DESIGN;
D O I
10.1007/s11071-024-10296-5
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Magnetic shape memory alloy-based actuator (MSMA-BA) has the advantages of large strain and high resolution. However, the inherent hysteresis characteristics accompanied by the dead zone in MSMA seriously degrade the positioning accuracy of MSMA-BA. In this study, a gated recurrent neural network (GRNN)-based nonlinear model predictive control (NMPC) method is designed to achieve precise trajectory tracking control of the MSMA-BA. First, a GRNN-based nonlinear auto-regressive moving average with exogenous inputs (NARMAX) model is designed to predict the various nonlinear characteristics of MSMA-BA. Based on the established model, an NMPC method with an anti-dead-zone function is designed. The introduced anti-dead-zone function enables the proposed NMPC algorithm to accelerate the response speed within the dead zone and prevents violent oscillations in the system. The ability of the NMPC to address the hysteresis characteristics accompanied by the dead zone is enhanced. Additionally, the convergence of the proposed NMPC method is analyzed using the Lyapunov stability theory. Extensive experiments are conducted on the MSMA-BA to validate the effectiveness of the proposed method.
引用
收藏
页码:1315 / 1332
页数:18
相关论文
共 50 条
  • [1] NEURAL NETWORK-BASED SENSORLESS CONTROL OF A SHAPE MEMORY ALLOY ACTUATOR
    Koshiya, Krunal
    Rizzello, Gianluca
    Motzki, Paul
    PROCEEDINGS OF ASME 2024 CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS, SMASIS 2024, 2024,
  • [3] A hopfield neural network-based Bouc-Wen model for magnetic shape memory alloy actuator
    Wang, Yifan
    Zhang, Chen
    Wu, Zhongshi
    Gao, Wei
    Zhou, Miaolei
    AIP ADVANCES, 2020, 10 (01)
  • [4] Chaotic Neural Network-Based Hysteresis Modeling With Dynamic Operator for Magnetic Shape Memory Alloy Actuator
    Zhang, Chen
    Yu, Yewei
    Wang, Yifan
    Han, Zhiwu
    Zhou, Miaolei
    IEEE TRANSACTIONS ON MAGNETICS, 2021, 57 (06)
  • [5] Neural Network Adaptive Control of Magnetic Shape Memory Alloy Actuator With Time Delay Based on Composite NARMAX Model
    Yu, Yewei
    Zhang, Chen
    Wang, En
    Zhou, Miaolei
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2023, 70 (08) : 3336 - 3346
  • [6] Neural-Network-Based Iterative Learning Control for Hysteresis in a Magnetic Shape Memory Alloy Actuator
    Yu, Yewei
    Zhang, Chen
    Wang, Yifan
    Zhou, Miaolei
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2022, 27 (02) : 928 - 939
  • [7] Neural Network Model for Hysteresis Non linearity of Magnetic Shape Memory Alloy Actuator
    Zhou, Miaolei
    Wang, Shoubin
    Gao, Wei
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2013, 10 (12) : 2931 - 2935
  • [8] Neural network-based micropositioning control of smart shape memory alloy actuators
    Asua, E.
    Etxebarria, V.
    Garcia-Arribas, A.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2008, 21 (05) : 796 - 804
  • [9] Neural Network Based Iterative Learning Control for Dynamic Hysteresis and Uncertainties in Magnetic Shape Memory Alloy Actuator
    Zhou, Miaolei
    Su, Liangcai
    Zhang, Chen
    Liu, Luming
    Yu, Yewei
    Zhang, Xiuyu
    Su, Chun-Yi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2024, 71 (06) : 2885 - 2896
  • [10] Neural network-based tracking control of autonomous marine vehicles with unknown actuator dead-zone
    Ma, Min
    Wang, Tong
    Guo, Runsheng
    Qiu, Jianbin
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2022, 32 (05) : 2969 - 2982