Phase change materials encapsulated in graphene hybrid aerogels with high thermal conductivity for efficient solar-thermal energy conversion and thermal management of solar PV panels

被引:0
|
作者
He, Fangfang [1 ]
Hong, Weijie [1 ]
Liu, Zhipeng [1 ]
Zhu, Yulin [1 ]
Li, Yongsheng [1 ]
Jiang, Zhuoni [1 ]
Chen, Zhengguo [2 ]
Yang, Wenbin [2 ]
机构
[1] Southwest Univ Sci & Technol, Sch Mat & Chem, State Key Lab Environm Friendly Energy Mat, Mianyang 621010, Peoples R China
[2] Mianyang Cent Hosp, NHC Key Lab Nucl Technol Med Transformat, Mianyang 621019, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Energy storage; Graphene aerogels; Polyethylene glycol; Shape-stabilized phase change materials; Solar-thermal energy conversion; BIOMASS; STORAGE;
D O I
10.1016/j.tca.2024.179853
中图分类号
O414.1 [热力学];
学科分类号
摘要
Phase change materials (PCMs) have a wide range of applications in latent heat storage and thermal management. However, their practical use is hindered by high leakage rates and low thermal conductivity. To address these issues, polyvinyl alcohol/carboxylated carbon nanotubes/graphene hybrid aerogels (PCG) were carbonized at high temperatures to obtain polyvinyl alcohol/carboxylated carbon nanotubes/graphene carbon aerogels (cPCG). Polyethylene glycol (PEG) was then encapsulated within cPCG to form cPCG@PEG shape-stabilized PCMs (SSPCMs). These cPCG@PEG SSPCMs demonstrated excellent thermal conductivity (0.843 W center dot m(-1)center dot K-1) and superior solar-thermal conversion performance (91.8%). Additionally, the latent heat of cPCG@PEG showed a minimal decrease even after 100 melt-crystallization cycles. An experimental setup was designed to regulate the temperature of solar photovoltaic (PV) panels using cPCG@PEG. The results indicated that cPCG@PEG effectively managed the temperature of solar PV panels under varying light conditions. This study presents a novel approach for enhancing the application of porous PCMs in solar energy utilization and thermal management of equipment.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Shape-stabilized phase change materials based on polyvinyl alcohol/ graphene hybrid aerogels for efficient solar-thermal energy conversion
    Hong, Weijie
    Liu, Zhipeng
    Chen, Jingzhou
    He, Guansong
    Wang, Peng
    Yang, Wenbin
    Li, Yongsheng
    He, Fangfang
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2024, 169
  • [2] Solar-thermal conversion and thermal energy storage of different phase change materials
    Eidgah, Emadoddin Erfani Farsi
    Ghafurian, Mohammad Mustafa
    Tavakoli, Ali
    Mortazavi, Ali
    Kianifar, Ali
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2023, 148 (16) : 8051 - 8060
  • [3] Solar-thermal conversion and thermal energy storage of different phase change materials
    Emadoddin Erfani Farsi Eidgah
    Mohammad Mustafa Ghafurian
    Ali Tavakoli
    Ali Mortazavi
    Ali Kianifar
    Journal of Thermal Analysis and Calorimetry, 2023, 148 : 8051 - 8060
  • [4] Anisotropic and hierarchical porous boron nitride/graphene aerogels supported phase change materials for efficient solar-thermal energy conversion
    Li, Yong
    Zheng, Nannan
    Ren, Yue
    Yang, Xiao
    Pan, Hao
    Chai, Zelong
    Xu, Linli
    Huang, Xiubing
    CERAMICS INTERNATIONAL, 2024, 50 (11) : 18923 - 18931
  • [5] Enhanced thermal conductivity of wood-based phase change materials with copper for thermal management and solar-thermal conversion
    Liu, Chen
    Li, Jing
    Bai, Kaiwen
    Lv, Shanshan
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2025, 704
  • [6] Correction: Solar-thermal conversion and thermal energy storage of different phase change materials
    Emadoddin Erfani Farsi Eidgah
    Mohammad Mustafa Ghafurian
    Ali Tavakoli
    Ali Mortazavi
    Ali Kianifar
    Journal of Thermal Analysis and Calorimetry, 2024, 149 (1) : 519 - 519
  • [7] Phase change materials encapsulated in a novel hybrid carbon skeleton for high-efficiency solar-thermal conversion and energy storage
    Liang, Haoyu
    Wang, Huanping
    Zhang, Pengcheng
    Ding, Dongliang
    Jiao, Yameng
    Zhou, Yijun
    Xue, Qunxiang
    Song, Qiang
    Zhang, Qiuyu
    Chen, Yanhui
    JOURNAL OF ENERGY STORAGE, 2024, 86
  • [8] Shape-stabilized phase change materials based on polyvinyl alcohol/ carboxylated carbon nanotubes/graphene hybrid aerogels for efficient solar-thermal conversion and thermal camouflage
    He, Fangfang
    Hong, Weijie
    Liu, Zhipeng
    Li, Yongsheng
    Jiang, Zhuoni
    Yang, Wenbin
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2024, 274
  • [9] An innovative graphene-based phase change composite constructed by syneresis with high thermal conductivity for efficient solar-thermal conversion and storage
    Wang, Jianqiang
    Li, Weijie
    Zhang, Xinya
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2024, 178 : 179 - 187
  • [10] D-mannitol-based eutectic composite phase change materials with high thermal conductivity and solar-thermal conversion
    Bai, Yu
    Qiu, Wenjuan
    Wang, Shuangfeng
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (11) : 15722 - 15732