High Dynamic Range Image Reconstruction Based on Dual-Attention Network

被引:0
|
作者
Wang Xianfeng [1 ,2 ,3 ]
Liu Shiben [2 ,3 ]
Tian Jiandong [2 ,3 ]
Zhao Juanping [1 ]
Liu Yajing [2 ,3 ]
Hao Chunhui [1 ,2 ,3 ]
机构
[1] Shenyang Univ Chem Technol, Coll Informat Engn, Shenyang 110142, Liaoning, Peoples R China
[2] Chinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Liaoning, Peoples R China
[3] Chinese Acad Sci, Inst Robot & Intelligent Mfg Innovat, Shenyang 110169, Liaoning, Peoples R China
关键词
image reconstruction; high dynamic range imaging; image fusion; dual attention mechanism; EXPANSION;
D O I
10.3788/LOP231770
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The existing deep-learning-based high dynamic range (HDR) image reconstruction methods used for HDR image reconstruction are prone to losing detailed information and providing poor color saturation. This is because the input image is overexposed or underexposed. To address this issue, we propose a dual-attention network-based HDR image reconstruction method. First, this method utilizes the dual-attention module (DAM) to apply the attention mechanism from pixel and channel dimensions, respectively, to extract and fuse the features of two overexposed or underexposed source images, and obtain a preliminary fusion image. Next, a feature enhancement module (FEM) is constructed to perform detail enhancement and color correction for the fused images. The final reference to contrastive learning is generating images closer to the reference image and away from the source image. After multiple trainings, the HDR image is finally generated. The experimental results show that our proposed method achieves the best evaluation results on peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and learned perceptual image patch similarity (LPIPS). Moreover, the generated HDR image exhibits good color saturation and accurate details.
引用
收藏
页数:8
相关论文
共 34 条
  • [1] A framework for inverse tone mapping
    Banterle, Francesco
    Ledda, Patrick
    Debattista, Kurt
    Chalmers, Alan
    Bloj, Marina
    [J]. VISUAL COMPUTER, 2007, 23 (07): : 467 - 478
  • [2] Learning a Deep Single Image Contrast Enhancer from Multi-Exposure Images
    Cai, Jianrui
    Gu, Shuhang
    Zhang, Lei
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (04) : 2049 - 2062
  • [3] Chen J, 2007, ACM T GRAPHIC, V26, DOI [10.1109/SARNOF.2007.4567317, 10.1145/1276377.1276506, 10.1145/1239451.1239554]
  • [4] HDR Imaging with Spatially Varying Signal-to-Noise Ratios
    Chi, Yiheng
    Zhang, Xingguang
    Chan, Stanley H.
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 5724 - 5734
  • [5] Debevec P. E., 1997, P 24 ANN C COMP GRAP, DOI DOI 10.1145/258734.258884
  • [6] Deep Reverse Tone Mapping
    Endo, Yuki
    Kanamori, Yoshihiro
    Mitani, Jun
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2017, 36 (06):
  • [7] Hu X Y, IEEE Transactions on Multimedia, P1
  • [8] Exposure Normalization and Compensation for Multiple-Exposure Correction
    Huang, Jie
    Liu, Yajing
    Fu, Xueyang
    Zhou, Man
    Wang, Yang
    Zhao, Feng
    Xiong, Zhiwei
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 6033 - 6042
  • [9] Multi-exposure image fusion based on feature evaluation with adaptive factor
    Huang, Li
    Li, Zhengping
    Xu, Chao
    Feng, Bo
    [J]. IET IMAGE PROCESSING, 2021, 15 (13) : 3211 - 3220
  • [10] Scope of validity of PSNR in image/video quality assessment
    Huynh-Thu, Q.
    Ghanbari, M.
    [J]. ELECTRONICS LETTERS, 2008, 44 (13) : 800 - U35