Functors between Kasparov categories from etale groupoid correspondences

被引:1
|
作者
Miller, Alistair [1 ]
机构
[1] Univ So Denmark, Inst Matemat & Datal, Campusvej 55, DK-5230 Odense M, Denmark
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
Groupoid; K-theory; Kasparov theory; C-*-algebras; BAUM-CONNES CONJECTURE; K-THEORY;
D O I
10.1016/j.jfa.2024.110623
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an etale correspondence Omega:G -> H of etale groupoids, we construct an induction functor Ind(Omega) :KKH -> KKG between equivariant Kasparov categories. We introduce the crossed product of an H-equivariant correspondence by Omega, and use this to build a natural transformation alpha Omega:K-*(G(sic)Ind(Omega)-)double right arrow K-*(H(sic)-). When Omega is proper these constructions naturally sit above an induced map in K-theory K-*(C-*(G))-> K-*(C-*(H)). (c) 2024 The Author. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:48
相关论文
共 50 条