Improved real-space parallelizable matrix-product state compression and its application

被引:2
|
作者
Sun, Rong-Yang [1 ,2 ,3 ]
Shirakawa, Tomonori [1 ,2 ,3 ,4 ,5 ]
Yunoki, Seiji [1 ,2 ,5 ]
机构
[1] RIKEN Ctr Computat Sci R CCS, Computat Mat Sci Res Team, Kobe, Hyogo 6500047, Japan
[2] RIKEN Ctr Quantum Comp RQC, Quantum Computat Sci Res Team, Wako, Saitama 3510198, Japan
[3] RIKEN, Interdisciplinary Theoret & Math Sci Program iTHE, Wako, Saitama 3510198, Japan
[4] RIKEN Cluster Pioneering Res CPR, Computat Condensed Matter Phys Lab, Saitama 3510198, Japan
[5] RIKEN Ctr Emergent Matter Sci CEMS, Computat Quantum Matter Res Team, Wako, Saitama 3510198, Japan
关键词
QUANTUM COMPUTATION; RENORMALIZATION-GROUP; SUPREMACY;
D O I
10.1103/PhysRevB.110.085149
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Towards the efficient simulation of near-term quantum devices using tensor network states, we introduce an improved real-space parallelizable matrix-product state (MPS) compression method. This method enables efficient compression of all virtual bonds in constant time, irrespective of the system size, with controlled accuracy, while it maintains the stability of the wave-function norm without necessitating sequential renormalization procedures. In addition, we introduce a parallel regauging technique to partially restore the deviated canonical form, thereby improving the accuracy of the simulation in subsequent steps. We further apply this method to simulate unitary quantum dynamics and introduce an improved parallel time-evolving block-decimation (pTEBD) algorithm. We employ the improved pTEBD algorithm for extensive simulations of typical one- and two-dimensional quantum circuits, involving over 1000 qubits. The obtained numerical results unequivocally demonstrate that the improved pTEBD algorithm achieves the same level of simulation precision as the current state-of-the-art MPS algorithm but in polynomially shorter time, exhibiting nearly perfect weak scaling performance on a modern supercomputer.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Real-space method for highly parallelizable electronic transport calculations
    Feldman, Baruch
    Seideman, Tamar
    Hod, Oded
    Kronik, Leeor
    PHYSICAL REVIEW B, 2014, 90 (03):
  • [2] Duality with real-space renormalization and its application to bond percolation
    Ohzeki, Masayuki
    PHYSICAL REVIEW E, 2013, 87 (01):
  • [3] Quantum critical point and entanglement in a matrix-product ground state
    Tribedi, Amit
    Bose, Indrani
    PHYSICAL REVIEW A, 2007, 75 (04):
  • [4] Efficient matrix-product state method for periodic boundary conditions
    Pippan, Peter
    White, Steven R.
    Evertz, Hans Gerd
    PHYSICAL REVIEW B, 2010, 81 (08):
  • [5] Matrix-Product State Approach to the Generalized Nuclear Pairing Hamiltonian
    Rausch, Roman
    Plorin, Cassian
    Peschke, Matthias
    Karrasch, Christoph
    ANNALEN DER PHYSIK, 2024, 536 (06)
  • [6] Application of Euclidean sums of matrix-product codes to quantum codes
    Liu, Jie
    Hu, Peng
    Liu, Xiusheng
    QUANTUM INFORMATION PROCESSING, 2023, 22 (05)
  • [7] Application of Euclidean sums of matrix-product codes to quantum codes
    Jie Liu
    Peng Hu
    Xiusheng Liu
    Quantum Information Processing, 22
  • [8] Real-space parallel density matrix renormalization group
    Stoudenmire, E. M.
    White, Steven R.
    PHYSICAL REVIEW B, 2013, 87 (15):
  • [9] APPLICATION OF THE REAL-SPACE RENORMALIZATION GROUP TO PERCOLATION AT A SURFACE
    DEBELL, K
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1979, 12 (16): : L605 - L611
  • [10] Time-dependent variational principle in matrix-product state manifolds: Pitfalls and potential
    Kloss, Benedikt
    Bar Lev, Yevgeny
    Reichman, David R.
    PHYSICAL REVIEW B, 2018, 97 (02)