Automatic Classification of Cardiac Arrhythmias Using Deep Learning Techniques: A Systematic Review

被引:0
|
作者
Vasquez-Iturralde, Fernando [1 ]
Flores-Calero, Marco Javier [2 ]
Grijalva, Felipe [3 ]
Rosales-Acosta, Andres [4 ,5 ]
机构
[1] Escuela Politec Nacl, Dept Elect Telecomunicac & Redes Informac, Quito 170525, Ecuador
[2] Univ Fuerzas Armadas, Dept Electr Elect & Telecomunicac, Sangolqui 171103, Pichincha, Ecuador
[3] Univ San Francisco Quito USFQ, Colegio Ciencias & Ingn Politecn, Quito 170157, Ecuador
[4] Escuela Politen Nacl, Dept Automatizac & Control Ind, Quito 170525, Ecuador
[5] Univ Invest Tecnol Expt Yachay Tech, Escuela Ciencias Tierra Energia & Ambiente, Urcuqui 100115, Ecuador
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Arrhythmia; Reviews; Deep learning; Systematics; Measurement; Electrocardiography; Diseases; Cardiac arrhythmia; convolution neural network; deep learning; electrocardiogram; systematic literature review; classification; ATRIAL-FIBRILLATION; ELECTROCARDIOGRAM; DIAGNOSIS; NETWORK;
D O I
10.1109/ACCESS.2024.3408282
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cardiac arrhythmias are one of the main causes of death worldwide; therefore, early detection is essential to save the lives of patients who suffer from them and to reduce the cost of medical treatment. The growth of electronic technology, combined with the great potential of Deep Learning (DL) techniques, has enabled the design of devices for early and accurate detection of cardiac arrhythmias. This article presents a Systematic Literature Review (SLR) using a Systematic Mapping study and Bibliometric Analysis, through a set of relevant research questions (RQs), in relation to DL techniques applied to the automatic detection and classification of cardiac arrhythmias using electrocardiogram (ECG) signals, during the period 2017-2023. The PRISMA 2020 methodology was employed to identify the most pertinent scholarly articles, by querying the following databases: Scopus, IEEE Xplore, and PhysioNet Challenges, resulting in 494 publications being retrieved. This study also included a bibliometric analysis aimed at tracing the evolution of the primary technologies utilized in the automatic detection and recognition of cardiac arrhythmias. Additionally, it evaluates the performance of each technology, offering insights crucial for guiding future research.
引用
收藏
页码:118467 / 118492
页数:26
相关论文
共 50 条
  • [1] Detection and Classification of Cardiac Arrhythmias by Machine Learning: a Systematic Review
    Fernandes, R. C.
    Paredes, J. S.
    Salinet, J.
    [J]. 2020 COMPUTING IN CARDIOLOGY, 2020,
  • [2] Visualization deep learning model for automatic arrhythmias classification
    Jiang, Mingfeng
    Qiu, Yujie
    Zhang, Wei
    Zhang, Jucheng
    Wang, Zhefeng
    Ke, Wei
    Wu, Yongquan
    Wang, Zhikang
    [J]. PHYSIOLOGICAL MEASUREMENT, 2022, 43 (08)
  • [3] Automated diagnosis and classification of liver cancers using deep learning techniques: a systematic review
    Grover, Sarthak
    Gupta, Surbhi
    [J]. Discover Applied Sciences, 2024, 6 (10)
  • [4] Classification of mechanisms underlying cardiac arrhythmias by deep learning
    Arredondo J.R.P.
    Tanscheit R.
    Monteiro E.C.
    da Silva E.C.
    de Sousa I.P.
    [J]. Research on Biomedical Engineering, 2020, 36 (04): : 475 - 487
  • [5] Skin Diseases Classification with Machine Learning and Deep Learning Techniques: A Systematic Review
    Aboulmira, Amina
    Hrimech, Hamid
    Lachgar, Mohamed
    [J]. International Journal of Advanced Computer Science and Applications, 2024, 15 (10) : 1155 - 1173
  • [6] Automatic breast cancer detection and classification using deep learning techniques
    Lakshmi Prasanna, K.
    Ashwini, S.
    [J]. Test Engineering and Management, 2019, 81 (11-12): : 5505 - 5510
  • [7] A Systematic Review on Automatic Insect Detection Using Deep Learning
    Teixeira, Ana Claudia
    Ribeiro, Jose
    Morais, Raul
    Sousa, Joaquim J.
    Cunha, Antonio
    [J]. AGRICULTURE-BASEL, 2023, 13 (03):
  • [8] Sleep Stage Classification using Deep Learning Techniques: A Review
    Park, Jiyong
    An, Jaewon
    Choi, Sang Ho
    [J]. IEIE Transactions on Smart Processing and Computing, 2023, 12 (01): : 30 - 37
  • [9] Automatic Detection of Cardiac Arrhythmias Using Ensemble Learning
    Peimankar, Abdolrahman
    Jajroodi, Mona Jafar
    Puthusserypady, Sadasivan
    [J]. PROCEEDINGS OF THE 2019 IEEE REGION 10 CONFERENCE (TENCON 2019): TECHNOLOGY, KNOWLEDGE, AND SOCIETY, 2019, : 383 - 388
  • [10] A systematic review for using deep learning in bone scan classification
    Yung-Shuo Kao
    Chun-Pang Huang
    Wen-Wen Tsai
    Jen Yang
    [J]. Clinical and Translational Imaging, 2023, 11 : 271 - 283