Machine learning-assisted analysis of dry and lubricated tribological properties of Al-Co-Cr-Fe-Ni high entropy alloy

被引:0
|
作者
Vashistha, Saurabh [1 ,2 ,3 ]
Mahanta, Bashista Kumar [1 ,2 ]
Singh, Vivek Kumar [4 ]
Sharma, Neha [2 ]
Ray, Anjan [5 ]
Dixit, Saurabh [6 ]
Singh, Shailesh Kumar [1 ,2 ,3 ]
机构
[1] CSIR Indian Inst Petr, Climate Change & Data Sci, Dehra Dun 248005, India
[2] CSIR Indian Inst Petr, CSIR, Mohkampur 248005, Dehradun, India
[3] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India
[4] Indian Inst Technol, Dept Mech Engn, Mumbai 400076, India
[5] CSIR Indian Inst Petr, Dehra Dun 248005, India
[6] Mishra Dhatu Nigam Ltd, Hyderabad 500058, India
来源
关键词
NEURAL NETS; FRICTION; OIL; BEHAVIOR; ADDITIVES;
D O I
10.1039/d4dd00169a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study marks a notable advancement in tribology by thoroughly investigating the tribological properties of a high-entropy alloy under both lubricated and dry conditions. The research encompasses a detailed evaluation of the alloy's wear behavior, utilizing a data-driven modeling approach that employs an evolutionary framework to build and validate a predictive model. The findings offer critical insights into the tribological performance of high-entropy alloys under diverse operational and lubrication conditions. Specifically, the Al-Co-Cr-Fe-Ni alloy exhibits exceptional tribological properties, with a coefficient of friction ranging from 0.0165 to 0.6024 and surface roughness between 0.261 and 1.11. A data-driven methodology was employed to develop a predictive model with an accuracy exceeding 94%, effectively capturing the precise trends in lubrication behavior and providing in-depth information on surface characteristics for future experimental endeavors and data extraction. Additionally, the study underscores the profound impact of lubricant chemical composition on the wear behavior of the alloy, highlighting the crucial importance of selecting appropriate lubricants for specific tribological applications. This study marks a notable advancement in tribology by thoroughly investigating the tribological properties of a high-entropy alloy under both lubricated and dry conditions.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Machine learning assisted optimization of tribological parameters of Al-Co-Cr-Fe-Ni high-entropy alloy
    Vashistha, Saurabh
    Mahanta, Bashista Kumar
    Singh, Vivek K.
    Singh, Shailesh Kumar
    MATERIALS AND MANUFACTURING PROCESSES, 2023, 38 (16) : 2093 - 2106
  • [2] Uncovering the eutectics design by machine learning in the Al-Co-Cr-Fe-Ni high entropy system
    Wu, Qingfeng
    Wang, Zhijun
    Hu, Xiaobing
    Zheng, Tao
    Yang, Zhongsheng
    He, Feng
    Li, Junjie
    Wang, Jincheng
    ACTA MATERIALIA, 2020, 182 : 278 - 286
  • [3] Evaluation of Tribological Behavior of Al-Co-Cr-Fe-Ni High Entropy Alloy Using Molecular Dynamics Simulation
    Huang, Jen-Ching
    SCANNING, 2012, 34 (05) : 325 - 331
  • [4] Mechanical properties of Al-Co-Cr-Fe-Ni high-entropy alloy: A molecular dynamics simulation
    Li, Junchen
    Liu, Zeyu
    Bao, Yanfei
    Ren, Junqiang
    Lu, Xuefeng
    Xue, Hongtao
    Tang, Fuling
    MODERN PHYSICS LETTERS B, 2024,
  • [5] B2-strengthened Al-Co-Cr-Fe-Ni high entropy alloy with high ductility
    Yen, Shao-yu
    Liu, Yu-chen
    Chu, Shun-hsiang
    Chang, Che-wei
    Lin, Shih-kang
    Tsai, Ming-Hung
    MATERIALS LETTERS, 2022, 325
  • [6] Design of Eutectic High Entropy Alloys in Al-Co-Cr-Fe-Ni System
    Shafiei, Ali
    METALS AND MATERIALS INTERNATIONAL, 2021, 27 (01) : 127 - 138
  • [7] Editorial: Dual-Phase Materials in the Medium and High Entropy Alloy Systems Al-Cr-Fe-Ni and Al-Co-Cr-Fe-Ni
    Hecht, Ulrike
    Guo, Sheng
    Weaver, Mark L.
    FRONTIERS IN MATERIALS, 2021, 8
  • [8] A cobalt-rich eutectic high-entropy alloy in the system Al-Co-Cr-Fe-Ni
    Shafiei, Ali
    Rajabi, Samin
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2019, 125 (11):
  • [9] Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys
    Zhang, Chuan
    Zhang, Fan
    Diao, Haoyan
    Gao, Michael C.
    Tang, Zhi
    Poplawsky, Jonathan D.
    Liaw, Peter K.
    MATERIALS & DESIGN, 2016, 109 : 425 - 433
  • [10] Phase composition prediction of Al-Co-Cr-Fe-Ni high entropy alloy system based on thermodynamic and electronic properties calculations
    Osintsev, Kirill
    Konovalov, Sergey
    Gromov, Victor
    Panchenko, Irina
    Chen, Xizhang
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 961 - 965