A data-driven mixed integer programming approach for joint chance-constrained optimal power flow under uncertainty

被引:0
|
作者
Qin, James Ciyu [1 ]
Jiang, Rujun [2 ]
Mo, Huadong [1 ]
Dong, Daoyi [1 ,3 ]
机构
[1] Univ New South Wales, Sch Engn & Technol, Northcott Dr, Canberra, ACT 2612, Australia
[2] Fudan Univ, Sch Data Sci, Handan Rd, Shanghai 20043, Peoples R China
[3] Australian Natl Univ, Sch Engn, CIICADA Lab, Univ Ave, Canberra, ACT 2601, Australia
基金
澳大利亚研究理事会;
关键词
Chance-constrained optimisation; Mixed integer programming; Optimal power flow; PROBABILISTIC GUARANTEES; OPTIMIZATION; SYSTEMS; NETWORKS; COST;
D O I
10.1007/s13042-024-02325-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a novel mixed integer programming (MIP) reformulation for the joint chance-constrained optimal power flow problem under uncertain load and renewable energy generation. Unlike traditional models, our approach incorporates a comprehensive evaluation of system-wide risk without decomposing joint chance constraints into individual constraints, thus preventing overly conservative solutions and ensuring robust system security. A significant innovation in our method is the use of historical data to form a sample average approximation that directly informs the MIP model, bypassing the need for distributional assumptions to enhance solution robustness. Additionally, we implement a model improvement strategy to reduce the computational burden, making our method more scalable for large-scale power systems. Our approach is validated against benchmark systems, i.e., IEEE 14-, 57- and 118-bus systems, demonstrating superior performance in terms of cost-efficiency and robustness, with lower computational demand compared to existing methods.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Data-Driven Chance-Constrained Stochastic Unit Commitment Under Wind Power Uncertainty
    Bagheri, Ali
    Zhao, Chaoyue
    Guo, Yuanxiong
    [J]. 2017 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, 2017,
  • [2] Data-Driven Chance-Constrained Optimal Gas-Power Flow Calculation: A Bayesian Nonparametric Approach
    Wang, Jingyao
    Wang, Cheng
    Liang, Yile
    Bi, Tianshu
    Shafie-khah, Miadreza
    Catalao, Joao P. S.
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2021, 36 (05) : 4683 - 4698
  • [3] Uncertainty Analysis for Data-Driven Chance-Constrained Optimization
    Haeussling Loewgren, Bartolomeus
    Weigert, Joris
    Esche, Erik
    Repke, Jens-Uwe
    [J]. SUSTAINABILITY, 2020, 12 (06)
  • [4] Chance Constrained Programming for Optimal Power Flow Under Uncertainty
    Zhang, Hui
    Li, Pu
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2011, 26 (04) : 2417 - 2424
  • [5] APPROXIMATING DATA-DRIVEN JOINT CHANCE-CONSTRAINED PROGRAMS VIA UNCERTAINTY SET CONSTRUCTION
    Hong, L. Jeff
    Huang, Zhiyuan
    Lam, Henry
    [J]. 2016 WINTER SIMULATION CONFERENCE (WSC), 2016, : 389 - 400
  • [6] Tractable Convex Approximations for Distributionally Robust Joint Chance-Constrained Optimal Power Flow Under Uncertainty
    Yang, Lun
    Xu, Yinliang
    Sun, Hongbin
    Wu, Wenchuan
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2022, 37 (03) : 1927 - 1941
  • [7] A Chance-Constrained Nonlinear Programming Approach for Equipment Design Under Uncertainty
    Tovar-Facio, Javier
    Cao, Yankai
    Ponce-Ortega, Jose M.
    Zavala, Victor M.
    [J]. 29TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PT A, 2019, 46 : 997 - 1002
  • [8] Optimal blending under general uncertainties: A chance-constrained programming approach
    Yang, Yu
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2023, 171
  • [9] Chance-Constrained Optimal Power Flow: Risk-Aware Network Control under Uncertainty
    Bienstock, Daniel
    Chertkov, Michael
    Harnett, Sean
    [J]. SIAM REVIEW, 2014, 56 (03) : 461 - 495
  • [10] Unit Commitment with Load Uncertainty by Joint Chance-Constrained Programming
    Peralta, J. J.
    Perez-Ruiz, J.
    de la Torre, S.
    [J]. 2013 IEEE GRENOBLE POWERTECH (POWERTECH), 2013,