Weighted PCL over Product Valuation Monoids

被引:3
|
作者
Karyoti, Vagia [1 ]
Paraponiari, Paulina [1 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Math, Thessaloniki 54124, Greece
关键词
Software architectures; Configuration logics; Product valuation monoids; Weighted configuration logics; Quantitative features; AUTOMATA; LOGICS;
D O I
10.1007/978-3-030-50029-0_19
中图分类号
学科分类号
摘要
We introduce a weighted propositional configuration logic over a product valuation monoid. Our logic is intended to serve as a specification language for software architectures with quantitative features such as the average of all interactions' costs of the architecture and the maximum cost among all costs occurring most frequently within a specific number of components in an architecture. We provide formulas of our logic which describe well-known architectures equipped with quantitative characteristics. Moreover, we prove an efficient construction of a full normal form which leads to decidability of equivalence of formulas in this logic.
引用
收藏
页码:301 / 319
页数:19
相关论文
共 50 条
  • [1] Describing Weighted Safety with Weighted LTL over Product ω-valuation Monoids
    Mandrali, Eleni
    SCIENTIFIC ANNALS OF COMPUTER SCIENCE, 2023, 33 (02) : 93 - 157
  • [2] Bisimulation Relations for Weighted Automata over Valuation Monoids
    Yang, Chao
    Li, Yong-Ming
    QUANTITATIVE LOGIC AND SOFT COMPUTING 2016, 2017, 510 : 181 - 191
  • [3] Weighted Tree Automata over Valuation Monoids and Their Characterization by Weighted Logics
    Droste, Manfred
    Goetze, Doreen
    Maercker, Steffen
    Meinecke, Ingmar
    ALGEBRAIC FOUNDATIONS IN COMPUTER SCIENCE: ESSAYS DEDICATED TO SYMEON BOZAPALIDIS ON THE OCCASION OF HIS RETIREMENT, 2011, 7020 : 30 - 55
  • [4] A Translation of Weighted LTL Formulas to Weighted Buchi Automata over ω-valuation Monoids
    Mandrali, Eleni
    SCIENTIFIC ANNALS OF COMPUTER SCIENCE, 2021, 31 (02) : 223 - 292
  • [5] Weighted Unranked Tree Automata over Tree Valuation Monoids and Their Characterization by Weighted Logics
    Droste, Manfred
    Heusel, Doreen
    Vogler, Heiko
    ALGEBRAIC INFORMATICS (CAI 2015), 2015, 9270 : 90 - 102
  • [6] A Kleene Theorem for Weighted Tree Automata over Tree Valuation Monoids
    Droste, Manfred
    Fueloep, Zoltan
    Goetze, Doreen
    LANGUAGE AND AUTOMATA THEORY AND APPLICATIONS, LATA 2016, 2016, 9618 : 452 - 463
  • [7] A Kleene theorem for weighted tree automata over tree valuation monoids
    Goetze, Doreen
    Fulop, Zoltan
    Droste, Manfred
    INFORMATION AND COMPUTATION, 2019, 269
  • [8] Weighted Automata Over Valuation Monoids with Input and Multi-output Characteristics
    Jin, Jian-Hua
    Li, Dong-Xue
    Li, Chun-Quan
    QUANTITATIVE LOGIC AND SOFT COMPUTING 2016, 2017, 510 : 193 - 201
  • [9] PRODUCT SYSTEMS OVER ORE MONOIDS
    Albandik, Suliman
    Meyer, Ralf
    DOCUMENTA MATHEMATICA, 2015, 20 : 1331 - 1402
  • [10] ON PROPERTIES OF PRODUCT ACTS OVER MONOIDS
    Nouri, Leila
    Golchin, Akbar
    Mohammadzadeh, Hossein
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (05) : 1854 - 1876