A semi-parametric maximum-likelihood analysis of measurement error in population size estimation

被引:0
|
作者
Di Loro, Pierfrancesco Alaimo [1 ]
Maruotti, Antonello [1 ]
机构
[1] Libera Univ Maria Ss Assunta, Dipartimento GEPLI, Via Pompeo Magno 28, I-00192 Rome, Italy
关键词
capture-recapture; finite mixtures; measurement error; nonparametric modelling; CAPTURE-RECAPTURE MODELS; MIXTURE-MODELS; CONVERGENCE; ALGORITHM;
D O I
10.1093/jrsssc/qlae037
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This work addresses the challenge of measurement errors in capture-recapture (CR) studies with covariates. These errors can introduce bias and undermine inference quality. To address this issue, we introduce a nonparametric measurement error model tailored to the 'repeated counts' setting, employing EM-type algorithms for parameter estimation. We use the Horvitz-Thompson estimator for population size estimates. Rigorous simulations, covering varying degrees of measurement error reliability, confirm our approach's effectiveness. Applied to benchmark datasets, it consistently provides more accurate point estimates and robust uncertainty quantification, enhancing the reliability of CR analyses.
引用
收藏
页码:1310 / 1332
页数:23
相关论文
共 50 条