Self-supervised Scalable Deep Compressed Sensing

被引:0
|
作者
Chen, Bin [1 ]
Zhang, Xuanyu [1 ]
Liu, Shuai [2 ]
Zhang, Yongbing [3 ]
Zhang, Jian [1 ]
机构
[1] Peking Univ, Sch Elect & Comp Engn, Shenzhen, Peoples R China
[2] Tsinghua Univ, Shenzhen Int Grad Sch, Shenzhen, Peoples R China
[3] Harbin Inst Technol Shenzhen, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
Compressed sensing; Inverse imaging problems; Self-supervised learning; Algorithm unrolling; IMAGE SUPERRESOLUTION; NETWORK; RECONSTRUCTION; ALGORITHMS; FRAMEWORK; SIGNAL;
D O I
10.1007/s11263-024-02209-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Compressed sensing (CS) is a promising tool for reducing sampling costs. Current deep neural network (NN)-based CS approaches face the challenges of collecting labeled measurement-ground truth (GT) data and generalizing to real applications. This paper proposes a novel Self-supervised sCalable deep CS method, comprising a deep Learning scheme called SCL and a family of Networks named SCNet, which does not require GT and can handle arbitrary sampling ratios and matrices once trained on a partial measurement set. Our SCL contains a dual-domain loss and a four-stage recovery strategy. The former encourages a cross-consistency on two measurement parts and a sampling-reconstruction cycle-consistency regarding arbitrary ratios and matrices to maximize data utilization. The latter can progressively leverage the common signal prior in external measurements and internal characteristics of test samples and learned NNs to improve accuracy. SCNet combines both the explicit guidance from optimization algorithms and the implicit regularization from advanced NN blocks to learn a collaborative signal representation. Our theoretical analyses and experiments on simulated and real captured data, covering 1-/2-/3-D natural and scientific signals, demonstrate the effectiveness, superior performance, flexibility, and generalization ability of our method over existing self-supervised methods and its significant potential in competing against many state-of-the-art supervised methods. Code is available at https://github.com/Guaishou74851/SCNet.
引用
收藏
页码:688 / 723
页数:36
相关论文
共 50 条
  • [1] Bayesian self-supervised learning allying with Transformer powered compressed sensing imaging
    Su, Yueming
    Yang, Yongli
    Shi, Baoshun
    Zhang, Yuwei
    DIGITAL SIGNAL PROCESSING, 2023, 140
  • [2] Deep Contrastive Self-Supervised Hashing for Remote Sensing Image Retrieval
    Tan, Xiaoyan
    Zou, Yun
    Guo, Ziyang
    Zhou, Ke
    Yuan, Qiangqiang
    REMOTE SENSING, 2022, 14 (15)
  • [3] Self-Supervised Learning in Remote Sensing
    Wang, Yi
    Albrecht, Conrad M.
    Ait Ali Braham, Nassim
    Mou, Lichao
    Zhu, Xiao Xiang
    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2022, 10 (04) : 213 - 247
  • [4] Deep hashing with self-supervised asymmetric semantic excavation and margin-scalable constraint
    Yu, Zhengyang
    Wu, Song
    Dou, Zhihao
    Bakker, Erwin M.
    NEUROCOMPUTING, 2022, 483 : 87 - 104
  • [5] Self-Supervised Deep Depth Denoising
    Sterzentsenko, Vladimiros
    Saroglou, Leonidas
    Chatzitofis, Anargyros
    Thermos, Spyridon
    Zioulis, Nikolaos
    Doumanoglou, Alexandros
    Zarpalas, Dimitrios
    Daras, Petros
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 1242 - 1251
  • [6] Self-Supervised Deep Correlation Tracking
    Yuan, Di
    Chang, Xiaojun
    Huang, Po-Yao
    Liu, Qiao
    He, Zhenyu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 976 - 985
  • [7] SELF-SUPERVISED REMOTE SENSING IMAGE RETRIEVAL
    Walter, Kane
    Gibson, Matthew J.
    Sowmya, Arcot
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 1683 - 1686
  • [8] Fast and scalable search of whole-slide images via self-supervised deep learning
    Chengkuan Chen
    Ming Y. Lu
    Drew F. K. Williamson
    Tiffany Y. Chen
    Andrew J. Schaumberg
    Faisal Mahmood
    Nature Biomedical Engineering, 2022, 6 : 1420 - 1434
  • [9] Fast and scalable search of whole-slide images via self-supervised deep learning
    Chen, Chengkuan
    Lu, Ming Y.
    Williamson, Drew F. K.
    Chen, Tiffany Y.
    Schaumberg, Andrew J.
    Mahmood, Faisal
    NATURE BIOMEDICAL ENGINEERING, 2022, 6 (12) : 1420 - +
  • [10] Deep active sampling with self-supervised learning
    Shi, Haochen
    Zhou, Hui
    FRONTIERS OF COMPUTER SCIENCE, 2023, 17 (04)