Analytic Theory of Legendre-Type Transformations for a Frobenius Manifold

被引:0
|
作者
Yang, Di [1 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
GROMOV-WITTEN INVARIANTS; TOPOLOGICAL FIELD-THEORY; AFFINE WEYL GROUPS; QUANTUM COHOMOLOGY; INTEGRABLE HIERARCHIES; HYDRODYNAMIC TYPE; ORBIT SPACE; DIFFERENTIAL-EQUATIONS; HAMILTONIAN STRUCTURES; STOKES MATRICES;
D O I
10.1007/s00220-024-05106-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let M be an n-dimensional Frobenius manifold. Fix kappa is an element of{1,& ctdot;,n}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa \in \{1,\dots ,n\}$$\end{document}. Assuming certain invertibility, Dubrovin introduced the Legendre-type transformation S kappa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_\kappa $$\end{document}, which transforms M to an n-dimensional Frobenius manifold S kappa(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_\kappa (M)$$\end{document}. In this paper, we show that these S kappa(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_\kappa (M)$$\end{document} share the same monodromy data at the Fuchsian singular point of the Dubrovin connection, and that for the case when M is semisimple they also share the same Stokes matrix and the same central connection matrix. A straightforward application of the monodromy identification is the following: if we know the monodromy data of some semisimple Frobenius manifold M, we immediately obtain those of its Legendre-type transformations. Another application gives the identification between the kappa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document}th partition function of a semisimple Frobenius manifold M and the topological partition function of S kappa(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\kappa }(M)$$\end{document}.
引用
收藏
页数:50
相关论文
共 50 条
  • [1] Fractional order of Legendre-type matrix polynomials
    Zayed, M.
    Hidan, M.
    Abdalla, M.
    Abul-Ez, M.
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [2] Fractional order of Legendre-type matrix polynomials
    M. Zayed
    M. Hidan
    M. Abdalla
    M. Abul-Ez
    Advances in Difference Equations, 2020
  • [3] Legendre-Type Integrands and Convex Integral Functions
    Borwein, Jonathan M.
    Yao, Liangjin
    JOURNAL OF CONVEX ANALYSIS, 2014, 21 (01) : 261 - 288
  • [4] On the Fractional Order Rodrigues Formula for the Shifted Legendre-Type Matrix Polynomials
    Zayed, Mohra
    Abul-Ez, Mahmoud
    Abdalla, Mohamed
    Saad, Nasser
    MATHEMATICS, 2020, 8 (01)
  • [5] Legendre-type optimality conditions for a variational problem with inequality state constraints
    Sayuri Koga
    Hidefumi Kawasaki
    Mathematical Programming, 1999, 84 : 421 - 434
  • [6] Legendre-type optimality conditions for a variational problem with inequality state constraints
    Koga, S
    Kawasaki, H
    MATHEMATICAL PROGRAMMING, 1999, 84 (02) : 421 - 434
  • [7] Legendre-type Special Functions Defined by Fractional Order Rodrigues Formula
    Rajkovic, P. M.
    Kiryakova, V. S.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES, 2010, 1301 : 644 - +
  • [8] Perspectives on the theory of pseudogroups of analytic transformations of infinite type
    Kamran, N
    Robert, T
    JOURNAL OF GEOMETRY AND PHYSICS, 1997, 23 (3-4) : 308 - 318
  • [9] Generalization of Resonant Equations for the Laguerre- and Legendre-Type Polynomials to Equations of the Fourth Order
    V. L. Makarov
    N. M. Romaniuk
    B. I. Bandyrskii
    Ukrainian Mathematical Journal, 2020, 71 : 1751 - 1762
  • [10] Generalization of Resonant Equations for the Laguerre- and Legendre-Type Polynomials to Equations of the Fourth Order
    Makarov, V. L.
    Romaniuk, N. M.
    Bandyrskii, B., I
    UKRAINIAN MATHEMATICAL JOURNAL, 2020, 71 (11) : 1751 - 1762