Multi-label feature selection by strongly relevant label gain and label mutual aid

被引:11
|
作者
Dai, Jianhua [1 ]
Huang, Weiyi [1 ]
Zhang, Chucai [1 ]
Liu, Jie [1 ]
机构
[1] Hunan Normal Univ, Coll Informat Sci & Engn, Changsha 410081, Peoples R China
基金
中国国家自然科学基金;
关键词
Fuzzy rough set; Fuzzy conditional mutual information; Multi-label feature selection; Strongly relevant label gain; Label mutual aid; CLASSIFICATION; INFORMATION;
D O I
10.1016/j.patcog.2023.109945
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-label feature selection, which addresses the challenge of high dimensionality in multi-label learning, has wide applicability in pattern recognition, machine learning, and related domains. Most existing studies on multi-label feature selection assume that all labels have the same importance with respect to features, however, they overlook the differences between labels and candidate features relative to selected features and the internal influence of the label space. To address this issue, we propose a novel method for multi-label feature selection that accounts for both the strongly relevant label gain and the label mutual aid. Firstly, we advance two new potential relationships between labels and candidate features relative to selected features, and the label discriminant function is introduced. Secondly, the mutual aid information between labels is presented to describe the internal correlation of the label space. Thirdly, the concept of strongly relevant label gain is defined based on the label discriminant function, which allows better exploration of positive correlation between features. Finally, the experimental results on sixteen multi-label benchmark datasets indicate that the proposed method outperforms other compared representative multi-label feature selection methods.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Label Construction for Multi-label Feature Selection
    Spolaor, Newton
    Monard, Maria Carolina
    Tsoumakas, Grigorios
    Lee, Huei Diana
    2014 BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2014, : 247 - 252
  • [2] Approximating mutual information for multi-label feature selection
    Lee, J.
    Lim, H.
    Kim, D. -W.
    ELECTRONICS LETTERS, 2012, 48 (15) : 929 - 930
  • [3] Multi-Label Feature Selection with Conditional Mutual Information
    Wang, Xiujuan
    Zhou, Yuchen
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [4] Multi-label feature selection via information gain
    Li, Ling
    Liu, Huawen
    Ma, Zongjie
    Mo, Yuchang
    Duan, Zhengjie
    Zhou, Jiaqing
    Zhao, Jianmin
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, 8933 : 345 - 355
  • [5] Feature selection for multi-label learning with streaming label
    Liu, Jinghua
    Li, Yuwen
    Weng, Wei
    Zhang, Jia
    Chen, Baihua
    Wu, Shunxiang
    NEUROCOMPUTING, 2020, 387 : 268 - 278
  • [6] Multi-label feature selection considering label supplementation
    Zhang, Ping
    Liu, Guixia
    Gao, Wanfu
    Song, Jiazhi
    PATTERN RECOGNITION, 2021, 120 (120)
  • [7] Multi-label Feature Selection via Information Gain
    Li, Ling
    Liu, Huawen
    Ma, Zongjie
    Mo, Yuchang
    Duan, Zhengjie
    Zhou, Jiaqing
    Zhao, Jianmin
    ADVANCED DATA MINING AND APPLICATIONS, ADMA 2014, 2014, 8933 : 345 - 355
  • [8] Mutual information-based label distribution feature selection for multi-label learning
    Qian, Wenbin
    Huang, Jintao
    Wang, Yinglong
    Shu, Wenhao
    KNOWLEDGE-BASED SYSTEMS, 2020, 195
  • [9] Multi-label feature selection based on neighborhood mutual information
    Lin, Yaojin
    Hu, Qinghua
    Liu, Jinghua
    Chen, Jinkun
    Duan, Jie
    APPLIED SOFT COMPUTING, 2016, 38 : 244 - 256
  • [10] Multi-label feature selection based on label correlations and feature redundancy
    Fan, Yuling
    Chen, Baihua
    Huang, Weiqin
    Liu, Jinghua
    Weng, Wei
    Lan, Weiyao
    KNOWLEDGE-BASED SYSTEMS, 2022, 241