Engineering the xylose metabolism of Saccharomyces cerevisiae for ethanol and single cell protein bioconversion

被引:2
|
作者
Huang, Mengtian [1 ,2 ,3 ]
Jin, Zhuocheng [1 ,2 ]
Ni, Hong [1 ,2 ]
Zhang, Peining [1 ,2 ]
Li, Huanan [1 ,2 ]
Liu, Jiashu [1 ,2 ]
Weng, Chengcheng [1 ]
Jiang, Zhengbing [1 ,2 ]
机构
[1] Hubei Univ, State Key Lab Biocatalysis & Enzyme Engn, Wuhan 430062, Peoples R China
[2] Hubei Univ, Sch Life Sci, Wuhan 430062, Peoples R China
[3] Hubei Engn Univ, Coll Life Sci & Technol, Xiaogan 432000, Peoples R China
来源
BIOMASS & BIOENERGY | 2024年 / 190卷
关键词
Xylose isomerase; Promoter; Glucose/xylose co-utilization; Saccharomyces cerevisiae; CO-FERMENTATION; S.-CEREVISIAE; EXPRESSION; ISOMERASE; GLUCOSE; PRETREATMENT; KINETICS; PROMOTER; IMPACT; GENES;
D O I
10.1016/j.biombioe.2024.107372
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Xylose isomerase (XI) pathway has been widely employed to enable Saccharomyces cerevisiae to convert xylose and glucose into commercially feasible lignocellulosic ethanol products. Nevertheless, studies about the effect of different promoters to the expression of xylA are lacking. Therefore, five strains with ADH1, GAPDH, PDC1, PGK, TEF1 promoters were constructed. Among them, S. cerevisiae INVSc1/pHM368-P-ADH1-xylA generated with xylA driven by ADH1 promoter displayed the highest xylose utilization rate (approximately 19.98 %) using xylose as the only carbon source. With 4 g/L glucose and 10 g/L xylose as the carbon sources, the xylose utilization rate was 60.04 %. Moreover, the utilization rate increased to 64.04 % with fermentation temperature elevated from 28 degrees C to 30 degrees C and reached 83.09 % with peptone and yeast extract as the nitrogen sources. The ethanol titer reached 1.74 g/L with a yield of 0.38 g/g sugar under this condition. In Comparison with direct fermentation, the single cell protein (SCP) was 1.27-fold higher during aerobic fed-batch fermentation. Furthermore, INVSc1/pHM368-P-ADH1-xylA attains high ethanol productivities and yields by converting glucose and xylose from non-detoxified bagasse hydrolysates as carbon sources. The results extend our understanding of the xylose metabolism of S. cerevisiae and provide a platform for biomass conversion to ethanol and SCP, hence paving the way for the development of a more economical and sustainable approach to co-fermentation performance and capabilities for future engineering.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Simultaneous bioconversion of glucose and xylose to ethanol by Saccharomyces cerevisiae in the presence of xylose isomerase
    P. Chandrakant
    V. S. Bisaria
    Applied Microbiology and Biotechnology, 2000, 53 : 301 - 309
  • [2] Simultaneous bioconversion of glucose and xylose to ethanol by Saccharomyces cerevisiae in the presence of xylose isomerase
    Chandrakant, P
    Bisaria, VS
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2000, 53 (03) : 301 - 309
  • [3] Increasing ethanol productivity from xylose in recombinant Saccharomyces cerevisiae by protein engineering
    Runquist, D.
    Hahn-Hagerdal, B.
    Bettiga, M.
    JOURNAL OF BIOTECHNOLOGY, 2010, 150 : S137 - S137
  • [4] Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism
    Kim, Soo Rin
    Park, Yong-Cheol
    Jin, Yong-Su
    Seo, Jin-Ho
    BIOTECHNOLOGY ADVANCES, 2013, 31 (06) : 851 - 861
  • [5] Metabolic engineering of Saccharomyces cerevisiae for increased bioconversion of lignocellulose to ethanol
    He Jun
    Cai Jiayi
    Indian Journal of Microbiology, 2012, 52 : 442 - 448
  • [6] Metabolic engineering of Saccharomyces cerevisiae for increased bioconversion of lignocellulose to ethanol
    He Jun
    Cai Jiayi
    INDIAN JOURNAL OF MICROBIOLOGY, 2012, 52 (03) : 442 - 448
  • [7] Engineering Chromatin Regulation of Xylose Utilization in Budding Yeast Saccharomyces cerevisiae for Efficient Bioconversion
    Wang, Wei-Bin
    Tang, Rui-Qi
    Yuan, Bing
    Wang, Yue
    Liu, Guo-Dong
    Li, Dong-Min
    Zhang, Hong-Jia
    Zhao, Xin-Qing
    Bai, Feng-Wu
    ACS SYNTHETIC BIOLOGY, 2025, 14 (03): : 794 - 803
  • [8] Metabolic engineering of Saccharomyces cerevisiae for bioconversion of D-xylose to D-xylonate
    Toivari, Mervi
    Nygard, Yvonne
    Kumpula, Esa-Pekka
    Vehkomaki, Maija-Leena
    Bencina, Mojca
    Valkonen, Mari
    Maaheimo, Hannu
    Andberg, Martina
    Koivula, Anu
    Ruohonen, Laura
    Penttila, Merja
    Wiebe, Marilyn G.
    METABOLIC ENGINEERING, 2012, 14 (04) : 427 - 436
  • [9] Engineering Saccharomyces cerevisiae for xylose utilization
    Pronk, J
    Kuyper, M
    Toirkens, M
    Winkler, R
    van Dijken, H
    de Laat, W
    JOURNAL OF BIOTECHNOLOGY, 2005, 118 : S86 - S87
  • [10] Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol
    Anjali Madhavan
    Sriappareddy Tamalampudi
    Kazunari Ushida
    Daisuke Kanai
    Satoshi Katahira
    Aradhana Srivastava
    Hideki Fukuda
    Virendra S. Bisaria
    Akihiko Kondo
    Applied Microbiology and Biotechnology, 2009, 82 : 1067 - 1078