Carlotto-Li have generalized Marques' path connectedness resultfor positive scalar curvatureR >0 metrics on closed 3-manifoldsto the case of compact 3-manifolds withR >0 and mean convexboundaryH >0. Using their result, we show that the space ofasymptotically flat metrics with nonnegative scalar curvature andmean convex boundary onR3\B3is path connected. The argumentbypasses Cerf's theorem, which was used in Marques' proof butwhich becomes inapplicable in the presence of a boundary. We alsoshow path connectedness for a class of maximal initial data setswith marginally outer trapped boundary
机构:
Univ Santiago de Compostela, Dept Fis Particulas, Santiago De Compostela, Spain
Inst Galego Fis Altas Enerxias IGFAE, E-15782 Santiago De Compostela, SpainUniv Santiago de Compostela, Dept Fis Particulas, Santiago De Compostela, Spain
Adam, C.
Oles, K.
论文数: 0引用数: 0
h-index: 0
机构:
Jagiellonian Univ, Inst Theoret Phys, Lojasiewicza 11, Krakow, PolandUniv Santiago de Compostela, Dept Fis Particulas, Santiago De Compostela, Spain
Oles, K.
Romanczukiewicz, T.
论文数: 0引用数: 0
h-index: 0
机构:
Jagiellonian Univ, Inst Theoret Phys, Lojasiewicza 11, Krakow, PolandUniv Santiago de Compostela, Dept Fis Particulas, Santiago De Compostela, Spain
Romanczukiewicz, T.
Wereszczynski, A.
论文数: 0引用数: 0
h-index: 0
机构:
Jagiellonian Univ, Inst Theoret Phys, Lojasiewicza 11, Krakow, PolandUniv Santiago de Compostela, Dept Fis Particulas, Santiago De Compostela, Spain