A Comparison of Interpretable Machine Learning Approaches to Identify Outpatient Clinical Phenotypes Predictive of First Acute Myocardial Infarction

被引:0
|
作者
Hodgman, Matthew [1 ]
Minoccheri, Cristian [1 ]
Mathis, Michael [2 ]
Wittrup, Emily [1 ]
Najarian, Kayvan [1 ,3 ,4 ,5 ,6 ]
机构
[1] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Anesthesiol, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Michigan Inst Data Sci, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Max Harry Weil Inst Crit Care Res & Innovat, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Dept Emergency Med, Ann Arbor, MI 48109 USA
[6] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
关键词
artificial intelligence; acute myocardial infarction; computational phenotypes; interpretable machine learning; CARDIOVASCULAR-DISEASE; RISK; CARE; PAIN;
D O I
10.3390/diagnostics14161741
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Acute myocardial infarctions are deadly to patients and burdensome to healthcare systems. Most recorded infarctions are patients' first, occur out of the hospital, and often are not accompanied by cardiac comorbidities. The clinical manifestations of the underlying pathophysiology leading to an infarction are not fully understood and little effort exists to use explainable machine learning to learn predictive clinical phenotypes before hospitalization is needed. Methods: We extracted outpatient electronic health record data for 2641 case and 5287 matched-control patients, all without pre-existing cardiac diagnoses, from the Michigan Medicine Health System. We compare six different interpretable, feature extraction approaches, including temporal computational phenotyping, and train seven interpretable machine learning models to predict the onset of first acute myocardial infarction within six months. Results: Using temporal computational phenotypes significantly improved the model performance compared to alternative approaches. The mean cross-validation test set performance exhibited area under the receiver operating characteristic curve values as high as 0.674. The most consistently predictive phenotypes of a future infarction include back pain, cardiometabolic syndrome, family history of cardiovascular diseases, and high blood pressure. Conclusions: Computational phenotyping of longitudinal health records can improve classifier performance and identify predictive clinical concepts. State-of-the-art interpretable machine learning approaches can augment acute myocardial infarction risk assessment and prioritize potential risk factors for further investigation and validation.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Predicting In-Hospital Mortality in Patients With Acute Myocardial Infarction: A Comparison of Machine Learning Approaches
    Soleimani, Hamidreza
    Najdaghi, Soroush
    Davani, Delaram Narimani
    Dastjerdi, Parham
    Samimisedeh, Parham
    Shayesteh, Hedieh
    Sattartabar, Babak
    Masoudkabir, Farzad
    Ashraf, Haleh
    Mehrani, Mehdi
    Jenab, Yaser
    Hosseini, Kaveh
    CLINICAL CARDIOLOGY, 2025, 48 (04)
  • [2] Integration of machine learning to identify diagnostic genes in leukocytes for acute myocardial infarction patients
    Zhang L.
    Liu Y.
    Wang K.
    Ou X.
    Zhou J.
    Zhang H.
    Huang M.
    Du Z.
    Qiang S.
    Journal of Translational Medicine, 21 (1)
  • [3] Predicting the risk of heart failure after acute myocardial infarction using an interpretable machine learning model
    Lin, Qingqing
    Zhao, Wenxiang
    Zhang, Hailin
    Chen, Wenhao
    Lian, Sheng
    Ruan, Qinyun
    Qu, Zhaoyang
    Lin, Yimin
    Chai, Dajun
    Lin, Xiaoyan
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2025, 12
  • [4] Machine learning in the prediction of in-hospital mortality in patients with first acute myocardial infarction
    Zhu, Xiaoli
    Xie, Bojian
    Chen, Yijun
    Zeng, Hanqian
    Hu, Jinxi
    CLINICA CHIMICA ACTA, 2024, 554
  • [5] Machine Learning to Predict the Likelihood of Acute Myocardial Infarction
    Than, Martin P.
    Pickering, John W.
    Sandoval, Yader
    Shah, Anoop S., V
    Tsanas, Athanasios
    Apple, Fred S.
    Blankenberg, Stefan
    Cullen, Louise
    Mueller, Christian
    Neumann, Johannes T.
    Twerenbold, Raphael
    Westermann, Dirk
    Beshiri, Agim
    Mills, Nicholas L.
    George, Peter M.
    Richards, A. Mark
    Troughton, Richard W.
    Aldous, Sally J.
    Chapman, Andrew R.
    Anand, Atul
    Greenslade, Jaimi
    Parsonage, William
    Boeddinghaus, Jasper
    Wildi, Karin
    Nestelberger, Thomas
    Badertscher, Patrick
    Du, Shaoqing
    Huang, Janel
    Smith, Stephen W.
    Soerensen, Nils A.
    Ojeda, Francisco
    CIRCULATION, 2019, 140 (11) : 899 - 909
  • [6] Machine learning prediction of mortality in Acute Myocardial Infarction
    Oliveira, Mariana
    Seringa, Joana
    Pinto, Fausto Jose
    Henriques, Roberto
    Magalhaes, Teresa
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2023, 23 (01)
  • [7] Machine learning prediction of mortality in Acute Myocardial Infarction
    Mariana Oliveira
    Joana Seringa
    Fausto José Pinto
    Roberto Henriques
    Teresa Magalhães
    BMC Medical Informatics and Decision Making, 23
  • [8] Machine Learning to Predict the Likelihood of Acute Myocardial Infarction
    Mills, Nicholas L.
    CIRCULATION, 2017, 136
  • [9] Comparing machine learning approaches to identify myocardial scar from the ECG
    Tung, J.
    Rogers, A. J.
    Ravi, N.
    Bhatia, N. K.
    Shah, R. L.
    Purewal, S. K.
    Baykaner, T.
    Rappel, W. J.
    Viswanathan, M. N.
    Brodt, C. R.
    Wang, P. J.
    Clifford, G.
    Tereshchenko, L.
    Narayan, S. M.
    EUROPEAN HEART JOURNAL, 2020, 41 : 2048 - 2048
  • [10] Comparison of transradial and transfemoral approaches for PCI in acute myocardial infarction
    Yang, Shi-Wei
    Zhou, Yu-Jie
    Jia, De-An
    CIRCULATION, 2012, 125 (19) : E867 - E867