Optimisation of gyrokinetic microstability using adjoint methods

被引:0
|
作者
Acton, G. O. [1 ,2 ]
Barnes, M. [1 ]
Newton, S. [2 ]
Thienpondt, H. [3 ]
机构
[1] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3PU, England
[2] United Kingdom Atom Energy Author, Culham Campus, Abingdon OX14 3DB, Oxon, England
[3] CIEMAT, Lab Nacl Fus, Madrid 28040, Spain
基金
英国工程与自然科学研究理事会;
关键词
fusion plasma; plasma confinement; plasma instabilities; STABILITY;
D O I
10.1017/S0022377824000709
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Microinstabilities drive turbulent fluctuations in inhomogeneous, magnetised plasmas. In the context of magnetic confinement fusion devices, this leads to an enhanced transport of particles, momentum and energy, thereby degrading confinement. In this work, we describe an application of the adjoint method to efficiently determine variations of gyrokinetic linear growth rates on a general set of external parameters in the local $\delta f$-gyrokinetic model. We then offer numerical verification of this approach. When coupled with gradient-based techniques, this methodology can facilitate the optimisation process for the microstability of the confined plasmas across a high-dimensional parameter space. We present a numerical demonstration wherein the ion-temperature-gradient instability growth rate in a tokamak plasma is minimised with respect to flux surface shaping parameters. The adjoint method approach demonstrates a significant computational speed-up compared with a finite-difference gradient calculation.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] Linear and nonlinear verification of gyrokinetic microstability codes
    Bravenec, R. V.
    Candy, J.
    Barnes, M.
    Holland, C.
    PHYSICS OF PLASMAS, 2011, 18 (12)
  • [2] Verification of gyrokinetic microstability codes with an LHD configuration
    Mikkelsen, D. R.
    Nunami, M.
    Watanabe, T. -H.
    Sugama, H.
    Tanaka, K.
    PHYSICS OF PLASMAS, 2014, 21 (11)
  • [3] A verification of the gyrokinetic microstability codes GEM, GYRO, and GS2
    Bravenec, R. V.
    Chen, Y.
    Candy, J.
    Wan, W.
    Parker, S.
    PHYSICS OF PLASMAS, 2013, 20 (10)
  • [4] Tidal turbine array optimisation using the adjoint approach
    Funke, S. W.
    Farrell, P. E.
    Piggott, M. D.
    RENEWABLE ENERGY, 2014, 63 : 658 - 673
  • [5] Optimisation of the homogenization of tissues using the adjoint method and the FDTD
    Silly-Carette, J.
    Lautru, D.
    Gati, A.
    Wong, M-F.
    Wiart, J.
    Hanna, V. Fouad
    2008 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-4, 2008, : 1368 - +
  • [6] Aerodynamic Shape Optimisation Using Parametric CAD and Discrete Adjoint
    Agarwal, Dheeraj
    Marques, Simao
    Robinson, Trevor T. T.
    AEROSPACE, 2022, 9 (12)
  • [7] CAD-based shape optimisation using adjoint sensitivities
    Yu, Guangxu
    Mueller, Jens-Dominik
    Jones, Dominic
    Christakopoulos, Faidon
    COMPUTERS & FLUIDS, 2011, 46 (01) : 512 - 516
  • [8] Adjoint-based fluid flow control and optimisation with lattice Boltzmann methods
    Krause, Mathias J.
    Thaeter, Gudrun
    Heuveline, Vincent
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 65 (06) : 945 - 960
  • [9] Adjoint Based Aerodynamic Shape Optimisation Using Kinetic Meshfree Method
    Malagi, Keshav S.
    Mamidi, Nischay R.
    Anil, Nemili
    Ramesh, Vasudev
    Deshpande, Suresh M.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2023, 37 (03) : 234 - 249
  • [10] Numerical optimisation of the diffuser in a typical turbocharger compressor using the adjoint method
    Kristaq Hazizi
    Ahad Ramezanpour
    Aaron Costall
    Automotive and Engine Technology, 2022, 7 (1-2) : 179 - 196