Optimisation of gyrokinetic microstability using adjoint methods
被引:0
|
作者:
Acton, G. O.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3PU, England
United Kingdom Atom Energy Author, Culham Campus, Abingdon OX14 3DB, Oxon, EnglandUniv Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3PU, England
Acton, G. O.
[1
,2
]
Barnes, M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3PU, EnglandUniv Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3PU, England
Barnes, M.
[1
]
Newton, S.
论文数: 0引用数: 0
h-index: 0
机构:
United Kingdom Atom Energy Author, Culham Campus, Abingdon OX14 3DB, Oxon, EnglandUniv Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3PU, England
Newton, S.
[2
]
Thienpondt, H.
论文数: 0引用数: 0
h-index: 0
机构:
CIEMAT, Lab Nacl Fus, Madrid 28040, SpainUniv Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3PU, England
Thienpondt, H.
[3
]
机构:
[1] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3PU, England
[2] United Kingdom Atom Energy Author, Culham Campus, Abingdon OX14 3DB, Oxon, England
Microinstabilities drive turbulent fluctuations in inhomogeneous, magnetised plasmas. In the context of magnetic confinement fusion devices, this leads to an enhanced transport of particles, momentum and energy, thereby degrading confinement. In this work, we describe an application of the adjoint method to efficiently determine variations of gyrokinetic linear growth rates on a general set of external parameters in the local $\delta f$-gyrokinetic model. We then offer numerical verification of this approach. When coupled with gradient-based techniques, this methodology can facilitate the optimisation process for the microstability of the confined plasmas across a high-dimensional parameter space. We present a numerical demonstration wherein the ion-temperature-gradient instability growth rate in a tokamak plasma is minimised with respect to flux surface shaping parameters. The adjoint method approach demonstrates a significant computational speed-up compared with a finite-difference gradient calculation.