Neural Implicit k-space with Trainable Periodic Activation Functions for Cardiac MR Imaging

被引:0
|
作者
Haft, Patrick T. [1 ]
Huang, Wenqi [1 ]
Cruz, Gastao
Rueckert, Daniel [1 ,2 ]
Zimmer, Veronika A. [1 ]
Hammernik, Kerstin [1 ]
机构
[1] Tech Univ Munich, Munich, Germany
[2] Imperial Coll London, London, England
来源
BILDVERARBEITUNG FUR DIE MEDIZIN 2024 | 2024年
关键词
D O I
10.1007/978-3-658-44037-4_26
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In MRI reconstruction, neural implicit k-space (NIK) representation maps spatial frequencies to k-space intensity values using an MLP with periodic activation functions. However, the choice of hyperparameters for periodic activation functions is challenging and influences training stability. In this work, we introduce and study the effectiveness of trainable (non-)periodic activation functions for NIK in the context of non-Cartesian Cardiac MRI. Evaluated on 42 radially sampled datasets from 6 subjects, NIKs with the proposed trainable activation functions outperform qualitatively and quantitatively other state-of-the-art reconstruction methods, including NIK with fixed periodic activation functions.
引用
收藏
页码:82 / 87
页数:6
相关论文
共 50 条
  • [1] Neural Implicit k-Space for Binning-Free Non-Cartesian Cardiac MR Imaging
    Huang, Wenqi
    Li, Hongwei Bran
    Pan, Jiazhen
    Cruz, Gastao
    Rueckert, Daniel
    Hammernik, Kerstin
    INFORMATION PROCESSING IN MEDICAL IMAGING, IPMI 2023, 2023, 13939 : 548 - 560
  • [2] SPIRAL K-SPACE MR-IMAGING OF CORTICAL ACTIVATION
    NOLL, DC
    COHEN, JD
    MEYER, CH
    SCHNEIDER, W
    JMRI-JOURNAL OF MAGNETIC RESONANCE IMAGING, 1995, 5 (01): : 49 - 56
  • [3] Implicit Neural Representations with Periodic Activation Functions
    Sitzmann, Vincent
    Martel, Julien N. P.
    Bergman, Alexander W.
    Lindell, David B.
    Wetzstein, Gordon
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [4] Body MR Imaging: Artifacts, k-Space, and Solutions
    Huang, Susie Y.
    Seethamraju, Ravi T.
    Patel, Pritesh
    Hahn, Peter F.
    Kirsch, John E.
    Guimaraes, Alexander R.
    RADIOGRAPHICS, 2015, 35 (05) : 1439 - 1460
  • [5] K-SPACE DESCRIPTION FOR MR IMAGING OF DYNAMIC OBJECTS
    XIANG, QS
    HENKELMAN, RM
    MAGNETIC RESONANCE IN MEDICINE, 1993, 29 (03) : 422 - 428
  • [6] Segmented k-space and real-time cardiac cine MR imaging with radial trajectories
    Shankaranarayanan, A
    Simonetti, OP
    Laub, G
    Lewin, JS
    Duerk, JL
    RADIOLOGY, 2001, 221 (03) : 827 - 836
  • [7] ICoNIK: Generating Respiratory-Resolved Abdominal MR Reconstructions Using Neural Implicit Representations in k-Space
    Spieker, Veronika
    Huang, Wenqi
    Eichhorn, Hannah
    Stelter, Jonathan
    Weiss, Kilian
    Zimmer, Veronika A.
    Braren, Rickmer F.
    Karampinos, Dimitrios C.
    Hammernik, Kerstin
    Schnabel, Julia A.
    DEEP GENERATIVE MODELS, DGM4MICCAI 2023, 2024, 14533 : 183 - 192
  • [8] Comparison of k-space sampling schemes for multidimensional MR spectroscopic imaging
    Hugg, JW
    Maudsley, AA
    Weiner, MW
    Matson, GB
    MAGNETIC RESONANCE IN MEDICINE, 1996, 36 (03) : 469 - 473
  • [9] Increasing of the MR Imaging Spatial Resolution by Data Estimation in k-space
    Naguliak, O. O.
    Netreba, A., V
    Radchenko, S. P.
    Sudakov, O. O.
    2017 IEEE 37TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2017, : 310 - 315
  • [10] A k-space analysis of MR tagging
    Kerwin, WS
    Prince, JL
    JOURNAL OF MAGNETIC RESONANCE, 2000, 142 (02) : 313 - 322