Crack propagation behavior of different zones in weldment under creep-fatigue loadings

被引:0
|
作者
Zhou, Dewen [1 ,2 ]
Wang, Xiaowei [1 ,2 ]
Gao, Letian [1 ,2 ]
Li, Heng [1 ,2 ]
Liu, Jianxin [3 ]
Kang, Zitong [1 ,2 ]
Zhang, Tianyu [1 ,2 ]
Zhang, Xiancheng [2 ,4 ]
Gong, Jianming [1 ,2 ]
Tu, Shantung [2 ,4 ]
机构
[1] Nanjing Tech Univ, Sch Mech & Power Engn, Nanjing 211816, Peoples R China
[2] Nanjing Tech Univ, Reliabil Ctr Mfg Res Inst, Nanjing 211816, Peoples R China
[3] Univ Ghent, Fac Engn & Architecture, Dept Elect Energy Met Mech Construct & Syst, Soete Lab, B-9000 Ghent, Belgium
[4] East China Univ Sci & Technol, Key Lab Pressure Syst & Safety, Minist Educ, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
Crystal plasticity finite element; Crack propagation; eXtended Finite Element Method; P92 steel welded joint; LOW-CYCLE FATIGUE; IN-SITU SEM; CRYSTAL PLASTICITY; GROWTH BEHAVIOR; CONSTITUTIVE RELATIONS; LIFE PREDICTION; SINGLE-CRYSTAL; WELDED-JOINTS; PART; STEEL;
D O I
10.1016/j.engfracmech.2024.110416
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, crack propagation behaviors in a weldment are simulated under cyclic loadings using crystal plasticity finite element coupled with the XFEM. The result shows that the cracks in heat affected zone grow faster than that in the welded zone. Short crack propagation dominated by dislocation activity takes approximately 4 to 5 grains, followed by long crack propagation which is unrelated to dislocation activity and the growth direction kept an angle to the loading direction (45 degrees-51 degrees). Experimentally observed deflections within grains and at grain boundaries, retardation at grain boundaries are captured by the simulation.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] SYMPOSIUM ON CRACK-PROPAGATION UNDER CREEP AND CREEP-FATIGUE - FOREWORD
    SADANANDA, K
    MURTY, KL
    [J]. METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1988, 19 (04): : 820 - 820
  • [2] Creep and creep-fatigue behavior of high chromium steel weldment
    Takahashi, Yukio
    Tabuchi, Masaaki
    [J]. ACTA METALLURGICA SINICA-ENGLISH LETTERS, 2011, 24 (03) : 175 - 182
  • [3] Creep and creep-fatigue behavior of high chromium steel weldment
    Yukio TAKAHASHI
    Masaaki TABUCHI
    [J]. Acta Metallurgica Sinica(English Letters), 2011, 24 (03) : 175 - 182
  • [4] CREEP-FATIGUE CRACK-PROPAGATION BEHAVIOR IN A SURFACE CRACKED PLATE
    NONAKA, I
    KITAGAWA, M
    KANEKO, H
    SATO, T
    YAMASHITA, M
    WATASHI, K
    ASADA, Y
    [J]. NUCLEAR ENGINEERING AND DESIGN, 1993, 139 (03) : 293 - 298
  • [5] CRACK GROWTH-BEHAVIOR UNDER CREEP-FATIGUE CONDITIONS
    SHAHINIAN, P
    SADANANDA, K
    [J]. REPORT OF NRL PROGRESS, 1976, (NOV): : 19 - 22
  • [6] EFFECTS OF IRRADIATION ON FATIGUE AND CREEP-FATIGUE CRACK-PROPAGATION
    MICHEL, DJ
    [J]. JOURNAL OF METALS, 1981, 33 (09): : A64 - A65
  • [7] Materials and Fabrication Creep and Creep-Fatigue Interaction and Crack Behavior
    [J]. PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE 2010, VOL 6, PTS A AND B, 2010, : 345 - 345
  • [8] DESIGN AND ASSESSMENT FOR CREEP-FATIGUE AND CREEP-FATIGUE CRACK GROWTH
    Ainsworth, Robert A.
    [J]. PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, 2016, VOL 1B, 2017,
  • [9] Creep and creep-fatigue crack growth
    Saxena, Ashok
    [J]. INTERNATIONAL JOURNAL OF FRACTURE, 2015, 191 (1-2) : 31 - 51
  • [10] Crack-growth behavior of alloy 230 under creep-fatigue conditions
    Roy, A. K.
    Chatterjee, S.
    Hasan, M. H.
    Pal, J.
    Ma, L.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (18-19): : 4830 - 4836