Predicting scale deposition in oil reservoirs using machine learning optimization algorithms

被引:6
|
作者
Khodabakhshi, Mohammad Javad [1 ]
Bijani, Masoud [2 ]
机构
[1] Petr Univ Technol, Ahvaz Fac Petr, Ahvaz, Iran
[2] Amirkabir Univ Technol, Tehran Polytech, Dept Petr Engn, Tehran, Iran
关键词
Scale deposition; Permeability reduction; Machine learning algorithms; Formation damage; Sulfate scale; Hyperparameter optimization; SULFATE SCALE; INHIBITOR;
D O I
10.1016/j.rineng.2024.102263
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Scale deposition, a form of formation damage, not only affects the reservoir but also damages the well and equipment. This phenomenon occurs due to changes in temperature, pressure, and the injection of incompatible salt water, leading to ionic reactions. This study investigated permeability reduction due to scale deposition and examined how parameters such as temperature, pressure drop, and ion concentration affect the prediction accuracy. The scale deposits investigated in this study include CaSO4, 4 , BaSO4, 4 , and SrSO4. 4 . This paper uses Python to employ different machine-learning algorithms to predict the results. Each machine learning model has certain hyper-parameters that need adjustment. Failure to do so will result in reduced accuracy and incomplete interpretation of input data. The accuracy of the support vector regression (SVR) algorithm was significantly affected by the variation of the epsilon parameter in the dataset used. Therefore, before hyperparameter optimization, SVR had the lowest accuracy at 0.575. After adjusting the hyper-parameters, our findings show that SVR had the highest increase in R-squared value, which was 0.900, and the most minor growth in KNN, which went from 0.995 to 0.996. Additionally, the highest accuracy value for K-Nearest Neighbor is 0.996. Furthermore, most errors were related to SVR and XGBoost algorithms, while the most negligible errors were for the Decision Tree and KNN algorithms.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Predicting of Credit Risk Using Machine Learning Algorithms
    Antony, Tisa Maria
    Kumar, B. Sathish
    ARTIFICIAL INTELLIGENCE: THEORY AND APPLICATIONS, VOL 1, AITA 2023, 2024, 843 : 99 - 114
  • [2] PREDICTING HEART DISEASE USING MACHINE LEARNING ALGORITHMS
    Berdaly, A. K.
    Abdiahmetova, Z. M.
    JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2022, 115 (03): : 101 - 111
  • [3] Predicting Workplace Injuries Using Machine Learning Algorithms
    Sukumar, Divya
    Zhang, Ji
    Tao, Xiaohui
    Wang, Xin
    Zhang, Wenbin
    2020 IEEE 7TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA 2020), 2020, : 763 - 764
  • [4] Using Machine Learning Algorithms for Predicting Stroke Disease
    Alyasein, Safa
    Alqaran, Romaisa
    Al-Aiad, Ahmad
    2024 15TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS, ICICS 2024, 2024,
  • [5] Predicting national-scale tile drainage discharge in Denmark using machine learning algorithms
    Motarjemi, Saghar K.
    Moller, Anders Bjorn
    Plauborg, Finn
    Iversen, Bo, V
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2021, 36
  • [6] Multi-Objective Optimization of CO2 Injection Process into Oil Reservoirs Using Machine Learning Algorithms: Incorporating Carbon Sequestration Mechanisms
    Azizi, Mehrab
    Hasheminezhad, Seyed Mehdi
    Moeinpour, Sayeh
    Kanaani, Mahdi
    Sedaee, Behnam
    ENERGY & FUELS, 2024, 38 (19) : 18814 - 18830
  • [7] Predicting Chronic Kidney Disease Using Machine Learning Algorithms
    Farjana, Afia
    Liza, Fatema Tabassum
    Pandit, Parth Pratim
    Das, Madhab Chandra
    Hasan, Mahadi
    Tabassum, Fariha
    Hossen, Md. Helal
    2023 IEEE 13TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE, CCWC, 2023, : 1267 - 1271
  • [8] Predicting and Analyzing Absenteeism at Workplace Using Machine Learning Algorithms
    Rista, Amarildo
    Ajdari, Jaumin
    Zenuni, Xhemal
    2020 43RD INTERNATIONAL CONVENTION ON INFORMATION, COMMUNICATION AND ELECTRONIC TECHNOLOGY (MIPRO 2020), 2020, : 485 - 490
  • [9] Predicting cash holdings using supervised machine learning algorithms
    Şirin Özlem
    Omer Faruk Tan
    Financial Innovation, 8
  • [10] Predicting the recurrence of breast cancer using machine learning algorithms
    Amal Alzu’bi
    Hassan Najadat
    Wesam Doulat
    Osama Al-Shari
    Leming Zhou
    Multimedia Tools and Applications, 2021, 80 : 13787 - 13800