Diabetes detection from non-diabetic retinopathy fundus images using deep learning methodology

被引:0
|
作者
Rom, Yovel [1 ]
Aviv, Rachelle [1 ]
Cohen, Gal Yaakov [2 ,3 ]
Friedman, Yehudit Eden [3 ,4 ]
Ianchulev, Tsontcho [1 ,5 ]
Dvey-Aharon, Zack [1 ]
机构
[1] AEYE Hlth Inc, New York, NY 10036 USA
[2] Sheba Med Ctr, Goldschleger Eye Inst, Tel Hashomer, Israel
[3] Tel Aviv Univ, Sackler Fac Med, Tel Aviv, Israel
[4] Sheba Med Ctr, Div Endocrinol Diabet & Metab, Ramat Gan, Israel
[5] Icahn Sch Med, New York Eye & Ear Mt Sinai, New York, NY USA
关键词
Diabetes; Artificial intelligence; Machine learning; PREDICTION; PHOTOGRAPHS; DISEASE; RISK;
D O I
10.1016/j.heliyon.2024.e36592
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Diabetes is one of the leading causes of morbidity and mortality in the United States and worldwide. Traditionally, diabetes detection from retinal images has been performed only using relevant retinopathy indications. This research aimed to develop an artificial intelligence (AI) machine learning model which can detect the presence of diabetes from fundus imagery of eyes without any diabetic eye disease. A machine learning algorithm was trained on the EyePACS dataset, consisting of 47,076 images. Patients were also divided into cohorts based on disease duration, each cohort consisting of patients diagnosed within the timeframe in question (e.g., 15 years) and healthy participants. The algorithm achieved 0.86 area under receiver operating curve (AUC) in detecting diabetes per patient visit when averaged across camera models, and AUC 0.83 on the task of detecting diabetes per image. The results suggest that diabetes may be diagnosed non-invasively using fundus imagery alone. This may enable diabetes diagnosis at point of care, as well as other, accessible venues, facilitating the diagnosis of many undiagnosed people with diabetes.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Investigation of Fundus Images for Detection of Diabetic Retinopathy Stage Using Deep Learning
    Basarab, M. R.
    Ivanko, K. O.
    VISNYK NTUU KPI SERIIA-RADIOTEKHNIKA RADIOAPARATOBUDUVANNIA, 2023, (94): : 49 - 57
  • [2] Diabetic Retinopathy Detection from Fundus Images of the Eye Using Hybrid Deep Learning Features
    Butt, Muhammad Mohsin
    Iskandar, D. N. F. Awang
    Abdelhamid, Sherif E.
    Latif, Ghazanfar
    Alghazo, Runna
    DIAGNOSTICS, 2022, 12 (07)
  • [3] Deep Learning for Diabetic Retinopathy in Fundus Images
    Rahimi, Keyvan
    Rituraj, Rituraj
    Ecker, Diana
    2022 IEEE 22ND INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND INFORMATICS AND 8TH IEEE INTERNATIONAL CONFERENCE ON RECENT ACHIEVEMENTS IN MECHATRONICS, AUTOMATION, COMPUTER SCIENCE AND ROBOTICS (CINTI-MACRO), 2022, : 351 - 358
  • [4] Diabetic retinopathy detection by fundus images using fine tuned deep learning model
    Singh S.P.
    Gupta P.
    Dung R.
    Multimedia Tools and Applications, 2024, 83 (39) : 86657 - 86679
  • [5] Deep Learning for Predicting the Progression of Diabetic Retinopathy using Fundus Images
    Bora, Ashish
    Babenko, Boris
    Virmani, Sunny
    Cuadros, Jorge
    Balasubramanian, Siva
    Varadarajan, Avinash V.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2020, 61 (07)
  • [6] Deep learning generalization for diabetic retinopathy staging from fundus images
    Men, Yevgeniy
    Fhima, Jonathan
    Celi, Leo Anthony
    Ribeiro, Lucas Zago
    Nakayama, Luis Filipe
    Behar, Joachim A.
    PHYSIOLOGICAL MEASUREMENT, 2025, 13 (01)
  • [7] Detection of Diabetic Retinopathy and Maculopathy in Eye Fundus Images Using Deep Learning and Image Augmentation
    Rahim, Sarni Suhaila
    Palade, Vasile
    Almakky, Ibrahim
    Holzinger, Andreas
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, CD-MAKE 2019, 2019, 11713 : 114 - 127
  • [8] Automated detection and classification of fundus diabetic retinopathy images using synergic deep learning model
    Shankar, K.
    Sait, Abdul Rahaman Wahab
    Gupta, Deepak
    Lakshmanaprabu, S. K.
    Khanna, Ashish
    Pandey, Hari Mohan
    PATTERN RECOGNITION LETTERS, 2020, 133 : 210 - 216
  • [9] Diabetic retinopathy detection and stage classification in eye fundus images using active deep learning
    Qureshi, Imran
    Ma, Jun
    Abbas, Qaisar
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (08) : 11691 - 11721
  • [10] A hybrid deep learning framework for early detection of diabetic retinopathy using retinal fundus images
    Mishmala Sushith
    A. Sathiya
    V. Kalaipoonguzhali
    V. Sathya
    Scientific Reports, 15 (1)